Global weighted estimates for quasilinear elliptic equations with non-standard growth

被引:33
作者
Zhang, Chao [1 ]
Zhou, Shulin [2 ]
机构
[1] Harbin Inst Technol, Dept Math, Harbin 150001, Peoples R China
[2] Peking Univ, Sch Math Sci, LMAM, Beijing 100871, Peoples R China
基金
高等学校博士学科点专项科研基金; 中国博士后科学基金;
关键词
Elliptic; p(x)-Laplacian; A(p) weight; Gradient estimate; BMO space; Reifenberg flat domain; VARIABLE EXPONENT; BMO COEFFICIENTS; GRADIENT; SPACES; INTEGRABILITY; REGULARITY;
D O I
10.1016/j.jfa.2014.03.022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we obtain a new global gradient estimates in weighted Lorentz spaces for weak solutions of p(x)-Laplacian type equation with small BMO coefficients in a delta-Reifenberg flat domain. The modified Vitali covering lemma, the maximal function technique and the appropriate localization method are the main analytical tools. Our results improve the known results for such equations. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:605 / 642
页数:38
相关论文
共 33 条
[11]  
Caffarelli LA, 1998, COMMUN PUR APPL MATH, V51, P1
[12]   Variable exponent, linear growth functionals in image restoration [J].
Chen, Yunmei ;
Levine, Stacey ;
Rao, Murali .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2006, 66 (04) :1383-1406
[13]   ON THE HIGHER INTEGRABILITY OF THE GRADIENT OF WEAK SOLUTIONS OF CERTAIN DEGENERATE ELLIPTIC-SYSTEMS [J].
DIBENEDETTO, E ;
MANFREDI, J .
AMERICAN JOURNAL OF MATHEMATICS, 1993, 115 (05) :1107-1134
[14]   Lebesgue and Sobolev Spaces with Variable Exponents [J].
Diening, Lars ;
Harjulehto, Petteri ;
Hasto, Peter ;
Ruzicka, Michael .
LEBESGUE AND SOBOLEV SPACES WITH VARIABLE EXPONENTS, 2011, 2017 :1-+
[15]   On the spaces Lp(x)(Ω) and Wm, p(x)(Ω) [J].
Fan, XL ;
Zhao, D .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 263 (02) :424-446
[16]  
Harjulehto P, 2007, MATH BOHEM, V132, P125
[17]   P-HARMONIC TENSORS AND QUASI-REGULAR MAPPINGS [J].
IWANIEC, T .
ANNALS OF MATHEMATICS, 1992, 136 (03) :589-624
[18]   PROJECTIONS ONTO GRADIENT FIELDS AND LP-ESTIMATES FOR DEGENERATED ELLIPTIC-OPERATORS [J].
IWANIEC, T .
STUDIA MATHEMATICA, 1983, 75 (03) :293-312
[19]   On the operator L(f)=flog|f| [J].
Iwaniec, T ;
Verde, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 1999, 169 (02) :391-420
[20]   GLOBAL INTEGRABILITY OF THE GRADIENTS OF SOLUTIONS TO PARTIAL-DIFFERENTIAL EQUATIONS [J].
KILPELAINEN, T ;
KOSKELA, P .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1994, 23 (07) :899-909