Symmetry incorporated Fuzzy C-means Method for Image Segmentation

被引:8
|
作者
Jayasuriya, Surani Anuradha [1 ]
Liew, Alan Wee-Chung [1 ]
机构
[1] Griffith Univ, Sch Informat & Commun Technol, Gold Coast Campus, Southport, Qld 4222, Australia
来源
2013 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ - IEEE 2013) | 2013年
关键词
Fuzzy C-means; bilateral symmetry; image segmentation; ALGORITHM;
D O I
10.1109/FUZZ-IEEE.2013.6622511
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a new modified fuzzy c-means (FCM) clustering algorithm that exploits bilateral symmetry information in image data. With the assumption of pixels that are located symmetrically tend to have similar intensity values; we compute the degree of symmetry for each pixel with respect to a global symmetry axis of the image. This information is integrated into the objective function of the standard FCM algorithm. Experimental results show the effectiveness of the approach. The method was further improved using neighbourhood information, and was compared with conventional fuzzy c-means algorithms.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Color Image Segmentation Using Kernalized Fuzzy C-means Clustering
    Mahajan, Sneha M.
    Dubey, Yogita K.
    2015 FIFTH INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS AND NETWORK TECHNOLOGIES (CSNT2015), 2015, : 1142 - 1146
  • [22] A Spatial Fuzzy C-means Algorithm with Application to MRI Image Segmentation
    Adhikari, Sudip Kumar
    Sing, Jamuna Kanta
    Basu, Dipak Kumar
    Nasipuri, Mita
    2015 EIGHTH INTERNATIONAL CONFERENCE ON ADVANCES IN PATTERN RECOGNITION (ICAPR), 2015, : 175 - 180
  • [23] Residual-driven Fuzzy C-Means Clustering for Image Segmentation
    Wang, Cong
    Pedrycz, Witold
    Li, ZhiWu
    Zhou, MengChu
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2021, 8 (04) : 876 - 889
  • [24] Comparison Methods for Fuzzy C-Means Initialization Applied to Image Segmentation
    Vela-Rincon, Virna V.
    Ramos-Palencia, Celia
    Mujica-Vargas, Dante
    Vianney Kinani, Jean Marie
    Ramos-Diaz, Eduardo
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, MICAI 2020, PT II, 2020, 12469 : 350 - 362
  • [25] Adaptive image segmentation method based on the fuzzy c-means with spatial information
    Zheng, Jia
    Zhang, Dinghua
    Huang, Kuidong
    Sun, Yuanxi
    IET IMAGE PROCESSING, 2018, 12 (05) : 785 - 792
  • [26] An Enhanced Spatial Intuitionistic Fuzzy C-means Clustering for Image Segmentation
    Arora, Jyoti
    Tushir, Meena
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND DATA SCIENCE, 2020, 167 : 646 - 655
  • [27] Medical Image Segmentation based on Improved Fuzzy C-means Clustering
    Liu, Dongling
    Ma, Ling
    Chen, Hui
    Meng, Ke
    2017 INTERNATIONAL CONFERENCE ON SMART GRID AND ELECTRICAL AUTOMATION (ICSGEA), 2017, : 406 - 410
  • [28] Fuzzy C-means Clustering with Bilateral Filtering for Medical Image Segmentation
    Liu, Yuchen
    Xiao, Kai
    Liang, Alei
    Guan, Haibing
    HYBRID ARTIFICIAL INTELLIGENT SYSTEMS, PT I, 2012, 7208 : 221 - 230
  • [29] Fast Generalized Fuzzy C-means Using Particle Swarm Optimization for Image Segmentation
    Dang Cong Tran
    Wu, Zhijian
    Van Hung Tran
    NEURAL INFORMATION PROCESSING (ICONIP 2014), PT II, 2014, 8835 : 263 - 270
  • [30] An Optimized Selective Scale Space Based Fuzzy C-Means Model for Image Segmentation
    Sharma, Geetika
    Sethi, Nandini
    Rana, Pooja
    ADVANCED INFORMATICS FOR COMPUTING RESEARCH, PT I, 2019, 1075 : 402 - 410