No Effect of Microgravity and Simulated Mars Gravity on Final Bacterial Cell Concentrations on the International Space Station: Applications to Space Bioproduction

被引:32
作者
Santomartino, Rosa [1 ]
Waajen, Annemiek C. [1 ]
de Wit, Wessel [1 ]
Nicholson, Natasha [1 ]
Parmitano, Luca [2 ]
Loudon, Claire-Marie [1 ]
Moeller, Ralf [3 ]
Rettberg, Petra [3 ]
Fuchs, Felix M. [3 ,9 ]
Van Houdt, Rob [4 ]
Finster, Kai [5 ]
Coninx, Ilse [4 ]
Krause, Jutta [2 ]
Koehler, Andrea [2 ]
Caplin, Nicol [2 ]
Zuijderduijn, Lobke [2 ]
Zolesi, Valfredo [6 ]
Balsamo, Michele [6 ]
Mariani, Alessandro [6 ]
Pellari, Stefano S. [6 ]
Carubia, Fabrizio [6 ]
Luciani, Giacomo [6 ]
Leys, Natalie [4 ]
Doswald-Winkler, Jeannine [7 ]
Herova, Magdalena [7 ]
Wadsworth, Jennifer [8 ]
Everroad, R. Craig [8 ]
Rattenbacher, Bernd [7 ]
Demets, Rene [2 ]
Cockell, Charles S. [1 ]
机构
[1] Univ Edinburgh, Sch Phys & Astron, UK Ctr Astrobiol, Edinburgh, Midlothian, Scotland
[2] European Space Res & Technol Ctr ESTEC, Noordwijk, Netherlands
[3] German Aerosp Ctr DLR, Inst Aerosp Med, Radiat Biol Dept, Cologne, Germany
[4] Belgian Nucl Res Ctr, SCK CEN, Microbiol Unit, Mol, Belgium
[5] Aarhus Univ, Dept Biol Microbiol, Aarhus C, Denmark
[6] Kayser Italia Srl, Livorno, Italy
[7] Hsch Luzern Tech & Architektur, BIOTESC, Hergiswil, Switzerland
[8] NASA, Exobiol Branch, Ames Res Ctr, Moffett Field, CA USA
[9] Ruhr Univ Bochum, Fac Elect Engn & Informat Sci, Inst Elect Engn & Plasma Technol, Bochum, Germany
基金
英国科学技术设施理事会;
关键词
microgravity (μ g); spaceflight; Mars gravity; BioRock; International Space Station (ISS); space microbiology; space bioproduction; bacterial cell concentration; ESCHERICHIA-COLI; BACILLUS-SUBTILIS; SPHINGOMONAS-DESICCABILIS; PLANT BIOLOGY; GROWTH; FLIGHT; RESPONSES; STRESS; CULTIVATION; VIRULENCE;
D O I
10.3389/fmicb.2020.579156
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Microorganisms perform countless tasks on Earth and they are expected to be essential for human space exploration. Despite the interest in the responses of bacteria to space conditions, the findings on the effects of microgravity have been contradictory, while the effects of Martian gravity are nearly unknown. We performed the ESA BioRock experiment on the International Space Station to study microbe-mineral interactions in microgravity, simulated Mars gravity and simulated Earth gravity, as well as in ground gravity controls, with three bacterial species: Sphingomonas desiccabilis, Bacillus subtilis, and Cupriavidus metallidurans. To our knowledge, this was the first experiment to study simulated Martian gravity on bacteria using a space platform. Here, we tested the hypothesis that different gravity regimens can influence the final cell concentrations achieved after a multi-week period in space. Despite the different sedimentation rates predicted, we found no significant differences in final cell counts and optical densities between the three gravity regimens on the ISS. This suggests that possible gravity-related effects on bacterial growth were overcome by the end of the experiment. The results indicate that microbial-supported bioproduction and life support systems can be effectively performed in space (e.g., Mars), as on Earth.
引用
收藏
页数:15
相关论文
共 85 条
[1]   A human mission to Mars: Predicting the bone mineral density loss of astronauts [J].
Axpe, Eneko ;
Chan, Doreen ;
Abegaz, Metadel F. ;
Schreurs, Ann-Sofie ;
Alwood, Joshua S. ;
Globus, Ruth K. ;
Appel, Eric A. .
PLOS ONE, 2020, 15 (01)
[2]   Escherichia coli growth under modeled reduced gravity [J].
Baker, PW ;
Meyer, ML ;
Leff, LG .
MICROGRAVITY SCIENCE AND TECHNOLOGY, 2004, 15 (04) :39-44
[3]   Spiculous skeleton formation in the freshwater sponge Ephydatia fluviatilis under hypergravity conditions [J].
Bart, Martijn C. ;
de Vet, Sebastiaan J. ;
de Bakker, Didier M. ;
Alexander, Brittany E. ;
van Oevelen, Dick ;
van Loon, E. Emiel ;
van Loon, Jack J. W. A. ;
de Goeij, Jasper M. .
PEERJ, 2019, 6
[4]   Can genetically modified Escherichia coli with neutral buoyancy induced by gas vesicles be used as an alternative method to clinorotation for microgravity studies? [J].
Benoit, M ;
Klaus, D .
MICROBIOLOGY-SGM, 2005, 151 :69-74
[5]   Microgravity, bacteria, and the influence of motility [J].
Benoit, Michael R. ;
Klaus, David M. .
ADVANCES IN SPACE RESEARCH, 2007, 39 (07) :1225-1232
[6]   Microbial antibiotic production aboard the International Space Station [J].
Benoit, MR ;
Li, W ;
Stodieck, LS ;
Lam, KS ;
Winther, CL ;
Roane, TM ;
Klaus, DM .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2006, 70 (04) :403-411
[7]   ESCHERICHIA-COLI METABOLISM IN SPACE [J].
BOULOC, P ;
DARI, R .
JOURNAL OF GENERAL MICROBIOLOGY, 1991, 137 :2839-2843
[8]   Rock geochemistry induces stress and starvation responses in the bacterial proteome [J].
Bryce, Casey C. ;
Le Bihan, Thierry ;
Martin, Sarah F. ;
Harrison, Jesse P. ;
Bush, Timothy ;
Spears, Bryan ;
Moore, Alanna ;
Leys, Natalie ;
Byloos, Bo ;
Cockell, Charles S. .
ENVIRONMENTAL MICROBIOLOGY, 2016, 18 (04) :1110-1121
[9]   The Impact of Space Flight on Survival and Interaction of Cupriavidus metallidurans CH34 with Basalt, a Volcanic Moon Analog Rock [J].
Byloos, Bo ;
Coninx, Ilse ;
Van Hoey, Olivier ;
Cockell, Charles ;
Nicholson, Natasha ;
Ilyin, Vyacheslav ;
Van Houdt, Rob ;
Boon, Nico ;
Leys, Natalie .
FRONTIERS IN MICROBIOLOGY, 2017, 8
[10]  
Cavanagh Peter R, 2005, Gravit Space Biol Bull, V18, P39