Deep Learning Feature Fusion-Based Retina Image Classification

被引:3
作者
Zhang Tianfu [1 ]
Zhong Shuncong [1 ]
Lian Chaoming [1 ]
Zhou Ning [1 ]
Xie Maosong [2 ]
机构
[1] Fuzhou Univ, Sch Mech Engn & Automat, Fuzhou 350108, Fujian, Peoples R China
[2] Fujian Med Univ, Affiliated Hosp 1, Fuzhou 350000, Fujian, Peoples R China
关键词
image processing; convolutional neural network; retinal image; feature fusion; weighted loss function;
D O I
10.3788/LOP57.241025
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Aiming at the problems of missed detection and low efficiency in manual classification and diagnosis of optical coherence tomography retina images, a deep learning-based convolutional network classification algorithm is proposed to construct joint multilayer features. First, retinal images are preprocessed using the mean shift and data normalization algorithm. The loss function weighting algorithm is combined to solve the data imbalance problem. Second, a lightweight deep separable convolution rather than an ordinary convolution layer is used to reduce the number of model parameters. Global average pooling replaces fully connected layers to increase spatial robustness, and different convolutional layers are used to build feature fusion layers to enhance feature circulation between layers. Finally, the SoftMax classifier is used for image classification. Experimental results show that the model can achieve 97 A, 95 A, and 97% in accuracy, precision, and recall, respectively, thereby reducing the recognition time. The proposed deep learning feature fusion-based method performs well in the classification and diagnosis of retinal images.
引用
收藏
页数:8
相关论文
共 20 条
[1]  
[Anonymous], 2019, J KUNMING MED U, DOI DOI 10.1097/MNM.0000000000000951
[2]  
[Anonymous], 2015, Deep learn. nat., DOI [10.1038/nature14539, DOI 10.1038/NATURE14539]
[3]   Eye Disease Prediction from Optical Coherence Tomography Images with Transfer Learning [J].
Bhowmik, Arka ;
Kumar, Sanjay ;
Bhat, Neeraj .
ENGINEERING APPLICATIONS OF NEURAL NETWORKSX, 2019, 1000 :104-114
[4]  
Bi K, 2019, ONCORADIOLOGY, V28, P296
[5]   IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045 [J].
Cho, N. H. ;
Shaw, J. E. ;
Karuranga, S. ;
Huang, Y. ;
Fernandes, J. D. da Rocha ;
Ohlrogge, A. W. ;
Malanda, B. .
DIABETES RESEARCH AND CLINICAL PRACTICE, 2018, 138 :271-281
[6]  
Feng Y, 2019, ACTA OPTICA SINICA, V39
[7]  
Ioffe S, 2020, BATCHN ORMALIZATION
[8]   Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning [J].
Kermany, Daniel S. ;
Goldbaum, Michael ;
Cai, Wenjia ;
Valentim, Carolina C. S. ;
Liang, Huiying ;
Baxter, Sally L. ;
McKeown, Alex ;
Yang, Ge ;
Wu, Xiaokang ;
Yan, Fangbing ;
Dong, Justin ;
Prasadha, Made K. ;
Pei, Jacqueline ;
Ting, Magdalena ;
Zhu, Jie ;
Li, Christina ;
Hewett, Sierra ;
Dong, Jason ;
Ziyar, Ian ;
Shi, Alexander ;
Zhang, Runze ;
Zheng, Lianghong ;
Hou, Rui ;
Shi, William ;
Fu, Xin ;
Duan, Yaou ;
Huu, Viet A. N. ;
Wen, Cindy ;
Zhang, Edward D. ;
Zhang, Charlotte L. ;
Li, Oulan ;
Wang, Xiaobo ;
Singer, Michael A. ;
Sun, Xiaodong ;
Xu, Jie ;
Tafreshi, Ali ;
Lewis, M. Anthony ;
Xia, Huimin ;
Zhang, Kang .
CELL, 2018, 172 (05) :1122-+
[9]   Tannins and vascular complications of Diabetes: An update [J].
Laddha, Ankit P. ;
Kulkarni, Yogesh A. .
PHYTOMEDICINE, 2019, 56 :229-245
[10]   Multi-modal feature fusion for geographic image annotation [J].
Li, Ke ;
Zou, Changqing ;
Bu, Shuhui ;
Liang, Yun ;
Zhang, Jian ;
Gong, Minglun .
PATTERN RECOGNITION, 2018, 73 :1-14