Detecting Hidden Chaotic Regions and Complex Dynamics in the Self-Exciting Homopolar Disc Dynamo

被引:83
作者
Wei, Zhouchao [1 ,2 ,3 ,4 ]
Moroz, Irene [3 ]
Sprott, Julien Clinton [5 ]
Wang, Zhen [6 ]
Zhang, Wei [4 ]
机构
[1] China Univ Geosci, Sch Math & Phys, Wuhan 430074, Peoples R China
[2] Yulin Normal Univ, Guangxi Coll & Univ Key Lab Complex Syst Optimiza, Yulin 537000, Peoples R China
[3] Univ Oxford, Math Inst, Oxford OX2 6GG, England
[4] Beijing Univ Technol, Coll Mech Engn, Beijing 100124, Peoples R China
[5] Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA
[6] Xijing Univ, Dept Appl Sci, Xian 710123, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2017年 / 27卷 / 02期
基金
中国博士后科学基金;
关键词
Homopolar disc dynamo; hidden attractor; multistability and coexistence; homoclinic orbit; dynamics at infinity; HOMOCLINIC ORBITS; SYSTEM; ATTRACTORS; FLOWS;
D O I
10.1142/S0218127417300087
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 1979, Moffatt pointed out that the conventional treatment of the simplest self-exciting homopolar disc dynamo has inconsistencies because of the neglect of induced azimuthal eddy currents, which can be resolved by introducing a segmented disc dynamo. Here we return to the simple dynamo system proposed by Moffatt, and demonstrate previously unknown hidden chaotic attractors. Then we study multistability and coexistence of three types of attractors in the autonomous dynamo system in three dimensions: equilibrium points, limit cycles and hidden chaotic attractors. In addition, the existence of two homoclinic orbits is proved rigorously by the generalized Melnikov method. Finally, by using Poincare compactification of polynomial vector fields in three dimensions, the dynamics near infinity of singularities is obtained.
引用
收藏
页数:19
相关论文
共 47 条
[1]  
Andrievsky BR, 2013, IFAC Proc, V46, P75
[2]  
[Anonymous], 1965, SOV MATH DOKL
[3]  
[Anonymous], 2016, INT J BIFURCATION CH
[4]   Galactic magnetism: Recent developments and perspectives [J].
Beck, R ;
Brandenburg, A ;
Moss, D ;
Shukurov, A ;
Sokoloff, D .
ANNUAL REVIEW OF ASTRONOMY AND ASTROPHYSICS, 1996, 34 :155-206
[5]  
Blekhman I, 2007, IFAC P, V40, P126
[6]  
Bullard EC., 1955, P CAMBRIDGE PHIL SOC, V51, P744, DOI DOI 10.1017/S0305004100030814
[7]   BOUNDED POLYNOMIAL VECTOR-FIELDS [J].
CIMA, A ;
LLIBRE, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 318 (02) :557-580
[8]   Hidden attractors in dynamical systems [J].
Dudkowski, Dawid ;
Jafari, Sajad ;
Kapitaniak, Tomasz ;
Kuznetsov, Nikolay V. ;
Leonov, Gennady A. ;
Prasad, Awadhesh .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2016, 637 :1-50
[9]  
Eckert M., 2013, SCI LIFE TURBULENT T, P1868
[10]   ON THE NUMERICAL COMPUTATION OF POINCARE MAPS [J].
HENON, M .
PHYSICA D, 1982, 5 (2-3) :412-414