Almost Everywhere Divergent Subsequences of Fourier Sums of Functions from φ(L) ∧ H1w

被引:0
作者
Antonov, N. Yu. [1 ]
机构
[1] Russian Acad Sci, Ural Div, Inst Math & Mech, Moscow 117901, Russia
基金
俄罗斯基础研究基金会;
关键词
Fourier sum; gap sequence; trigonometric Fourier series; modulus of continuity; Dirichlet kernel; Lebesgue measurability; Jensen's inequality; SERIES;
D O I
10.1134/S0001434609030201
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a gap sequence of natural numbers {n(k)}(k=1)(infinity), for a nondecreasing function phi: [0 +infinity) -> [0, +infinity) such that phi(u) = o(u In In u) as u -> infinity, and a modulus of continuity satisfying the condition (In k)(-1) = O(w(n(k)(-1))), we present an example of a function F is an element of phi(L) boolean AND H-1(w) with an almost everywhere divergent subsequence {S-nk (F, x)} of the sequence of partial sums of the trigonometric Fourier series of the function F.
引用
收藏
页码:484 / 495
页数:12
相关论文
共 15 条
[1]  
[Anonymous], 1926, C. R. Acad. Sci. Paris
[2]  
[Anonymous], T MAT I STEKLOVA
[3]  
Antonov N. Yu., 1996, East J. Approx., V2, P187
[4]   Integrability of the majorants of Fourier series and divergence of the Fourier series of functions with restrictions on the integral modulus of continuity [J].
Antonov, NY .
MATHEMATICAL NOTES, 2004, 76 (5-6) :606-619
[5]  
ANTONOV NY, 2006, IZV TULGU MMI, V12, P12
[6]  
Bari N.K., 1961, TRIGONOMETRIC SERIES
[7]  
Gosselin RP., 1958, P AM MATH SOC, V9, P278, DOI 10.1090/S0002-9939-1958-0096068-0
[8]  
KHELADZE SV, 1989, DIVERGENCE EVERYWHER, V89, P51
[9]  
Kolmogorov A., 1923, FUND MATH, V4, P324, DOI DOI 10.4064/FM-4-1-324-328
[10]  
Konyagin SV, 2005, T I MAT MEKH URO RAN, V11, P112