A unified model of NMDA receptor-dependent bidirectional synaptic plasticity

被引:438
作者
Shouval, HZ
Bear, MF
Cooper, LN
机构
[1] Brown Univ, Inst Brain & Neural Syst, Dept Phys, Providence, RI 02912 USA
[2] Brown Univ, Dept Neurosci, Providence, RI 02912 USA
[3] Brown Univ, Howard Hughes Med Inst, Providence, RI 02912 USA
关键词
D O I
10.1073/pnas.152343099
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Synapses in the brain are bidirectionally modifiable, but the routes of induction are diverse. in various experimental paradigms, N-methyl-D-aspartate receptor-dependent long-term depression and long-term potentiation have been induced selectively by varying the membrane potential of the postsynaptic neurons during presynaptic stimulation of a constant frequency, the rate of presynaptic stimulation, and the timing of pre- and postsynaptic action potentials. In this paper, we present a mathematical embodiment of bidirectional synaptic plasticity that is able to explain diverse induction protocols with a fixed set of parameters. The key assumptions and consequences of the model can be tested experimentally; further, the model provides the foundation for a unified theory of N-methyl-D-aspartate receptor-dependent synaptic plasticity.
引用
收藏
页码:10831 / 10836
页数:6
相关论文
共 51 条
[1]   Metaplasticity: The plasticity of synaptic plasticity [J].
Abraham, WC ;
Bear, MF .
TRENDS IN NEUROSCIENCES, 1996, 19 (04) :126-130
[2]   LONG-TERM DEPRESSION OF EXCITATORY SYNAPTIC TRANSMISSION AND ITS RELATIONSHIP TO LONG-TERM POTENTIATION [J].
ARTOLA, A ;
SINGER, W .
TRENDS IN NEUROSCIENCES, 1993, 16 (11) :480-487
[3]   DIFFERENT VOLTAGE-DEPENDENT THRESHOLDS FOR INDUCING LONG-TERM DEPRESSION AND LONG-TERM POTENTIATION IN SLICES OF RAT VISUAL-CORTEX [J].
ARTOLA, A ;
BROCHER, S ;
SINGER, W .
NATURE, 1990, 347 (6288) :69-72
[4]   A PHYSIOLOGICAL-BASIS FOR A THEORY OF SYNAPSE MODIFICATION [J].
BEAR, MF ;
COOPER, LN ;
EBNER, FF .
SCIENCE, 1987, 237 (4810) :42-48
[5]   Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type [J].
Bi, GQ ;
Poo, MM .
JOURNAL OF NEUROSCIENCE, 1998, 18 (24) :10464-10472
[6]   THEORY FOR THE DEVELOPMENT OF NEURON SELECTIVITY - ORIENTATION SPECIFICITY AND BINOCULAR INTERACTION IN VISUAL-CORTEX [J].
BIENENSTOCK, EL ;
COOPER, LN ;
MUNRO, PW .
JOURNAL OF NEUROSCIENCE, 1982, 2 (01) :32-48
[7]   LONG-LASTING POTENTIATION OF SYNAPTIC TRANSMISSION IN DENTATE AREA OF ANESTHETIZED RABBIT FOLLOWING STIMULATION OF PERFORANT PATH [J].
BLISS, TVP ;
LOMO, T .
JOURNAL OF PHYSIOLOGY-LONDON, 1973, 232 (02) :331-356
[8]   ACTIVITY-DEPENDENT DECREASE IN NMDA RECEPTOR RESPONSES DURING DEVELOPMENT OF THE VISUAL-CORTEX [J].
CARMIGNOTO, G ;
VICINI, S .
SCIENCE, 1992, 258 (5084) :1007-1011
[9]   A biophysical model of bidirectional synaptic plasticity: Dependence on AMPA and NMDA receptors [J].
Castellani, GC ;
Quinlan, EM ;
Cooper, LN ;
Shouval, HZ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (22) :12772-12777
[10]   An experimental test of the role of postsynaptic calcium levels in determining synaptic strength using perirhinal cortex of rat [J].
Cho, K ;
Aggleton, JP ;
Brown, MW ;
Bashir, ZI .
JOURNAL OF PHYSIOLOGY-LONDON, 2001, 532 (02) :459-466