Oscillation and spectral properties of some classes of higher order differential operators and weighted nth order differential inequalities

被引:4
作者
Kalybay, Aigerim [1 ]
Oinarov, Ryskul [2 ]
Sultanaev, Yaudat [3 ]
机构
[1] KIMEP Univ, 4 Abay Ave, Alma Ata 050010, Kazakhstan
[2] LN Gumilyov Eurasian Natl Univ, 5 Munaytpasov St, Nur Sultan 010008, Kazakhstan
[3] Akmulla Bashkir State Pedag Univ, 3a Oktyabrskaya Revolut St, Ufa 450000, Russia
关键词
higher order differential operator; oscillation; non-oscillation; variational principle; weighted inequality; eigenvalues; spectrum discreteness; spectrum positive definiteness; nuclear operator; NONOSCILLATION; DISCRETENESS; TERM;
D O I
10.14232/ejqtde.2021.1.3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we obtain strong oscillation and non-oscillation conditions for a class of higher order differential equations in dependence on an integral behavior of its coefficients in a neighborhood of infinity. Moreover, we establish some spectral properties of the corresponding higher order differential operator. In order to prove these we establish a certain weighted differential inequality of independent interest.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 20 条
[1]  
Abylaeva AM, 2014, SIBERIAN MATH J+, V55, P387, DOI 10.1134/S003744661403001X
[2]   NECESSARY AND SUFFICIENT CONDITIONS FOR THE DISCRETENESS OF THE SPECTRUM OF CERTAIN SINGULAR DIFFERENTIAL-OPERATORS [J].
AHLBRANDT, CD ;
HINTON, DB ;
LEWIS, RT .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1981, 33 (01) :229-246
[3]  
APYSHEV O. D., 1979, MATH USSR IZV, V15, P739
[4]  
DOSL O., 1995, Arch. Math., V31, P85
[5]  
DOSLY O., 2005, N HOLLAND MATH STUDI, V202
[6]  
Dosly O, 2015, ELECTRON J QUAL THEO, P1
[7]  
Fisnarova S., 2005, ELECT J DIFFERENTIAL, P1, DOI DOI 10.14232/EJQTDE.2005.1.13
[8]  
Glazman I. M., 1963, DIRECT METHODS QUALI
[9]  
Kalyabin G.A, 1973, DIFFER EQU, V9, P951
[10]   One-dimensional differential Hardy inequality [J].
Kalybay, Aigerim .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,