Electronic transport in graphene nanoribbons with sublattice-asymmetric doping

被引:11
作者
Aktor, Thomas [1 ]
Jauho, Antti-Pekka [1 ]
Power, Stephen R. [1 ]
机构
[1] Tech Univ Denmark, Dept Micro & Nanotechnol, DTU Nanotech, CNG, DK-2800 Lyngby, Denmark
基金
新加坡国家研究基金会;
关键词
NITROGEN;
D O I
10.1103/PhysRevB.93.035446
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Recent experimental findings and theoretical predictions suggest that nitrogen-doped CVD-grown graphene may give rise to electronic band gaps due to impurity distributions which favor segregation on a single sublattice. Here, we demonstrate theoretically that such distributions lead to more complex behavior in the presence of edges, where geometry determines whether electrons in the sample view the impurities as a gap-opening average potential or as scatterers. Zigzag edges give rise to the latter case, and remove the electronic band gaps predicted in extended graphene samples. We predict that such behavior will give rise to leakage near grain boundaries with a similar geometry or in zigzag-edged etched devices. Furthermore, we examine the formation of one-dimensional metallic channels at interfaces between different sublattice domains, which should be observable experimentally and offer intriguing waveguiding possibilities.
引用
收藏
页数:7
相关论文
共 54 条
[1]   Peierls-Type Instability and Tunable Band Gap in Functionalized Graphene [J].
Abanin, D. A. ;
Shytov, A. V. ;
Levitov, L. S. .
PHYSICAL REVIEW LETTERS, 2010, 105 (08)
[2]  
ABANIN DA, ARXIV10081424
[3]   Anomalous Doping Effects on Charge Transport in Graphene Nanoribbons [J].
Biel, Blanca ;
Blase, X. ;
Triozon, Francois ;
Roche, Stephan .
PHYSICAL REVIEW LETTERS, 2009, 102 (09)
[4]   Band gaps in incommensurable graphene on hexagonal boron nitride [J].
Bokdam, Menno ;
Amlaki, Taher ;
Brocks, Geert ;
Kelly, Paul J. .
PHYSICAL REVIEW B, 2014, 89 (20)
[5]   Modeling electronic properties and quantum transport in doped and defective graphene [J].
Botello-Mendez, A. R. ;
Lherbier, A. ;
Charlier, J. -C. .
SOLID STATE COMMUNICATIONS, 2013, 175 :90-100
[6]   Atomically precise bottom-up fabrication of graphene nanoribbons [J].
Cai, Jinming ;
Ruffieux, Pascal ;
Jaafar, Rached ;
Bieri, Marco ;
Braun, Thomas ;
Blankenburg, Stephan ;
Muoth, Matthias ;
Seitsonen, Ari P. ;
Saleh, Moussa ;
Feng, Xinliang ;
Muellen, Klaus ;
Fasel, Roman .
NATURE, 2010, 466 (7305) :470-473
[7]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[8]   Edge currents and nanopore arrays in zigzag and chiral graphene nanoribbons as a route toward high-ZT thermoelectrics [J].
Chang, Po-Hao ;
Nikolic, Branislav K. .
PHYSICAL REVIEW B, 2012, 86 (04)
[9]   Tuneable electronic properties in graphene [J].
Craciun, M. F. ;
Russo, S. ;
Yamamoto, M. ;
Tarucha, S. .
NANO TODAY, 2011, 6 (01) :42-60
[10]   Structural, magnetic, and transport properties of substitutionally doped graphene nanoribbons from first principles [J].
Cruz-Silva, E. ;
Barnett, Z. M. ;
Sumpter, B. G. ;
Meunier, V. .
PHYSICAL REVIEW B, 2011, 83 (15)