DISTINCT ZEROS AND SIMPLE ZEROS FOR THE FAMILY OF DIRICHLET L-FUNCTIONS

被引:4
作者
Wu, Xiaosheng [1 ]
机构
[1] Hefei Univ Technol, Sch Math, Hefei 230009, Peoples R China
关键词
RIEMANN ZETA-FUNCTION; CRITICAL LINE;
D O I
10.1093/qmath/haw039
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
this paper, we study the number of additional zeros of Dirichlet L-function caused by multiplicity by using Asymptotic Large Sieve. Then in asymptotic terms we prove that there are > 80.13% of zeros of the family of Dirichlet L-functions which are distinct and > 60.261% of zeros of the family of Dirichlet L-functions which are simple. In addition, assuming the Generalized Riemann Hypothesis, we improve these proportions to 83.216% and 66.433%.
引用
收藏
页码:757 / 779
页数:23
相关论文
共 19 条
[1]   SIMPLE ZEROS OF THE RIEMANN ZETA-FUNCTION [J].
ANDERSON, RJ .
JOURNAL OF NUMBER THEORY, 1983, 17 (02) :176-182
[2]  
[Anonymous], 1974, PROC INTERNAT C MATH
[3]  
[Anonymous], P S PURE MATH
[4]   On simple zeros of the Riemann zeta-function [J].
Bui, H. M. ;
Heath-Brown, D. R. .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2013, 45 :953-961
[5]   More than 41% of the zeros of the zeta function are on the critical line [J].
Bui, H. M. ;
Conrey, Brian ;
Young, Matthew P. .
ACTA ARITHMETICA, 2011, 150 (01) :35-64
[6]   SIMPLE ZEROS OF PRIMITIVE DIRICHLET L-FUNCTIONS AND THE ASYMPTOTIC LARGE SIEVE [J].
Chandee, Vorrapan ;
Lee, Yoonbok ;
Liu, Sheng-Chi ;
Radziwill, Maksym .
QUARTERLY JOURNAL OF MATHEMATICS, 2014, 65 (01) :63-87
[7]   SIMPLE ZEROS OF THE RIEMANN ZETA-FUNCTION [J].
CHEER, AY ;
GOLDSTON, DA .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 118 (02) :365-372
[8]   ZEROS OF DERIVATIVES OF RIEMANN ZETA-FUNCTION ON THE CRITICAL LINE [J].
CONREY, B .
JOURNAL OF NUMBER THEORY, 1983, 16 (01) :49-74
[9]   Critical zeros of Dirichlet L-functions [J].
Conrey, J. Brian ;
Iwaniec, Henryk ;
Soundararajan, Kannan .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2013, 681 :175-198
[10]   MORE THAN 2/5 OF THE ZEROS OF THE RIEMANN ZETA-FUNCTION ARE ON THE CRITICAL LINE [J].
CONREY, JB .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1989, 399 :1-26