A simulated fast hexagonal Fourier transform

被引:0
|
作者
Her, IC [1 ]
Huang, CC [1 ]
Hsieh, RD [1 ]
机构
[1] Natl Sun Yat Sen Univ, Dept Mech & Electromech Engn, Kaohsiung 80424, Taiwan
来源
IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES | 2004年 / E87A卷 / 07期
关键词
hexagonal grid; fast Fourier transform;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Many applications of digital image processing require the evaluation of fast Fourier transforms. Therefore, for the more conventional rectangular grid image systems, FFT algorithms have been largely developed so far. For users of hexagonal grid image systems, unfortunately, life is less easier since they generally have to write the hexagonal FFT codes by themselves. This complexity tends to hinder the development and use of the hexagonal imaging system. In this short paper, we propose, without a mathematical proof, a method to simulate hexagonal FFTs based on the relations between the two grid systems. And this is done with only the use of regular rectangular FFT schemes. By this method, a hexagonally sampled image can be easily transformed via the many FFT programs available in the market.
引用
收藏
页码:1804 / 1809
页数:6
相关论文
共 50 条
  • [11] A New Fast Discrete Fourier Transform
    Feng Zhou
    Peter Kornerup
    Journal of VLSI signal processing systems for signal, image and video technology, 1998, 20 : 219 - 232
  • [12] Parametric versions of the fast Fourier transform
    Malozemov, V. N.
    Prosekov, O. V.
    DOKLADY MATHEMATICS, 2008, 78 (01) : 576 - 578
  • [13] Linear bijections and the fast Fourier transform
    Hegland, M
    Wheeler, WW
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 1997, 8 (02) : 143 - 163
  • [14] Parametric versions of the fast Fourier transform
    V. N. Malozemov
    O. V. Prosekov
    Doklady Mathematics, 2008, 78 : 576 - 578
  • [15] Fast and accurate Polar Fourier transform
    Averbuch, A.
    Coifman, R. R.
    Donoho, D. L.
    Elad, M.
    Israeli, M.
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2006, 21 (02) : 145 - 167
  • [16] Fast Fourier transform accelerated fast multipole algorithm
    Elliott, WD
    Board, JA
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1996, 17 (02) : 398 - 415
  • [17] Fast reduction a module polynomial and fast Vandermonde transform based on fast Fourier transform algorithms
    Krot, AM
    SIGNAL PROCESSING, SENSOR FUSION, AND TARGET RECOGNITION VII, 1998, 3374 : 505 - 514
  • [18] Fractional-Fourier-transform calculation through the fast-Fourier-transform algorithm
    Garcia, J
    Mas, D
    Dorsch, RG
    APPLIED OPTICS, 1996, 35 (35): : 7013 - 7018
  • [19] Fast Fourier transform discrete dislocation dynamics
    Graham, J. T.
    Rollett, A. D.
    LeSar, R.
    MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2016, 24 (08)
  • [20] Fast Fourier Transform for multivariate aggregate claims
    Robe-Voinea, Elena-Gratiela
    Vernic, Raluca
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (01) : 205 - 219