S-units attached to genus 3 hyperelliptic curves

被引:7
作者
Arledge, J [1 ]
机构
[1] UNIV NEWCASTLE,DEPT MATH,NEWCASTLE,NSW 2308,AUSTRALIA
关键词
D O I
10.1006/jnth.1997.2073
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let C be a hyperelliptic curve of genus 3, with potentially goad reduction at all primes not dividing 3. defined over a number field ii. A function defined on thr Jacobian J of C will be constructed which. when evaluated at the 3-torsion points J[3] of J, will give S-units in K(J[3]): at most, the set S will consist of primes dividing 3. (C) 1997 Academic Press.
引用
收藏
页码:12 / 29
页数:18
相关论文
共 19 条
[1]  
[Anonymous], ARITHMETIC GEOMETRY
[2]  
[Anonymous], 1974, TIFR STUDIES MATH
[3]  
ARLEDGE J, 1995, THESIS U COLORADO
[4]   On a system of differential equations leading to periodic functions [J].
Baker, HF .
ACTA MATHEMATICA, 1903, 27 (01) :135-156
[5]  
BOXALL J, 1990, PUBLICATIONS MATH U, V104
[6]   CONJECTURE OF BIRCH AND SWINNERTON-DYER [J].
COATES, J ;
WILES, A .
INVENTIONES MATHEMATICAE, 1977, 39 (03) :223-251
[7]  
GRANT D, 1994, COMPOS MATH, V94, P311
[8]  
GRANT D, 1991, P LOND MATH SOC, V3, P121
[9]  
Iitaka Shigeru, 1982, GRADUATE TEXTS MATH, V76, P24
[10]  
Lang S., 1983, COMPLEX MULTIPLICATI