Locking-free variational formulations and isogeometric analysis for the Timoshenko beam models of strain gradient and classical elasticity

被引:71
作者
Balobanov, Viacheslav [1 ]
Niiranen, Jarkko [1 ,2 ]
机构
[1] Aalto Univ, Sch Engn, Dept Civil Engn, POB 12100, Aalto 00076, Finland
[2] Tech Univ Munich, Fac Civil Engn & Geodesy, Computat Engn, Arcisstr 21, D-80333 Munich, Germany
基金
芬兰科学院;
关键词
Timoshenko beam; Variational formulation; Strain gradient elasticity; Isogeometric analysis; Size effect; Shear locking; BOUNDARY-VALUE-PROBLEMS; FINITE-ELEMENTS; PLATES;
D O I
10.1016/j.cma.2018.04.028
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The Timoshenko beam bending problem is formulated in the context of strain gradient elasticity for both static and dynamic analysis. Two non-standard variational formulations in the Sobolev space framework are presented in order to avoid the numerical shear locking effect pronounced in the strain gradient context. Both formulations are shown to be reducible to their locking-free counterparts of classical elasticity. Conforming Galerkin discretizations for numerical results are obtained by an isogeometric CP -1-continuous approach with B-spline basis functions of order p >= 2. Convergence analyses cover both statics and free vibrations as well as both strain gradient and classical elasticity. Parameter studies for the thickness and gradient parameters, including micro-inertia terms, demonstrate the capability of the beam model in capturing size effects. Finally, a model comparison between the gradient-elastic Timoshenko and Euler-Bernoulli beam models justifies the relevance of the former, confirmed by experimental results on nano-beams from literature. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:137 / 159
页数:23
相关论文
共 44 条
[1]   Exploring the applicability of gradient elasticity to certain micro/nano reliability problems [J].
Aifantis, Elias C. .
MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2009, 15 (01) :109-115
[2]  
Altan BS., 1997, J. Mech. Behav. Mater, V8, P231, DOI [DOI 10.1515/JMBM.1997.8.3.231, 10.1515/JMBM.1997.8.3.231]
[3]   DISCRETIZATION BY FINITE-ELEMENTS OF A MODEL PARAMETER DEPENDENT PROBLEM [J].
ARNOLD, DN .
NUMERISCHE MATHEMATIK, 1981, 37 (03) :405-421
[4]   A size-dependent nonlinear Timoshenko microbeam model based on the strain gradient theory [J].
Asghari, M. ;
Kahrobaiyan, M. H. ;
Nikfar, M. ;
Ahmadian, M. T. .
ACTA MECHANICA, 2012, 223 (06) :1233-1249
[5]   Gradient elasticity and flexural wave dispersion in carbon nanotubes [J].
Askes, Harm ;
Aifantis, Elias C. .
PHYSICAL REVIEW B, 2009, 80 (19)
[6]  
Bleustein J.L., 1967, Int. J. Solids Struct, V3, P1053, DOI DOI 10.1016/0020-7683(67)90029-7
[7]   Size dependence of Young's modulus in ZnO nanowires [J].
Chen, CQ ;
Shi, Y ;
Zhang, YS ;
Zhu, J ;
Yan, YJ .
PHYSICAL REVIEW LETTERS, 2006, 96 (07)
[8]  
Cottrell J.A., 2009, Isogeometric Analysis: Towards Unification of Computer Aided Design and Finite Element Analysis
[9]   SHEAR COEFFICIENT IN TIMOSHENKOS BEAM THEORY [J].
COWPER, GR .
JOURNAL OF APPLIED MECHANICS, 1966, 33 (02) :335-&
[10]   A locking-free model for Reissner-Mindlin plates: Analysis and isogeometric implementation via NURBS and triangular NURPS [J].
Da Veiga, L. Beirao ;
Hughes, T. J. R. ;
Kiendl, J. ;
Lovadina, C. ;
Niiranen, J. ;
Reali, A. ;
Speleers, H. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2015, 25 (08) :1519-1551