Apery-like numbers arising from special values of spectral zeta functions for non-commutative harmonic oscillators

被引:24
作者
Kimoto, Kazufumi [1 ]
Wakayama, Masato
机构
[1] Univ Ryukyus, Dept Math Sci, Okinawa 9030231, Japan
[2] Kyushu Univ, Fac Math, Fukuoka 8128518, Japan
关键词
spectral zeta function; non-commutative harmonic oscillator; Heun differential equation; hypergeometric function; zeta (3); Apery numbers;
D O I
10.2206/kyushujm.60.383
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We derive an expression for the value zeta(Q)(3) of the spectral zeta function zeta(Q)(s) for the non-commutative harmonic oscillator using a Gaussian hypergeometric function. In this study, two sequences of rational numbers, denoted (J) over tilde (2)(n) and (J) over tilde (3)(n), which can be regarded as analogues of the Apery numbers, naturally arise and play a key role in obtaining the expressions for the values zeta(Q)(2) and zeta(Q)(3). We also show that the numbers (J) over tilde (2)(n) and (J) over tilde (3)(n) have congruence relations such as those of the Apery numbers.
引用
收藏
页码:383 / 404
页数:22
相关论文
共 20 条
[1]  
Ahlgren S, 2000, J REINE ANGEW MATH, V518, P187
[2]  
[Anonymous], 1999, SPECIAL FUNCTIONS
[3]  
BEUKERS F, 1984, J REINE ANGEW MATH, V351, P42
[4]   SOME CONGRUENCES FOR THE APERY NUMBERS [J].
BEUKERS, F .
JOURNAL OF NUMBER THEORY, 1985, 21 (02) :141-155
[5]   ANOTHER CONGRUENCE FOR THE APERY NUMBERS [J].
BEUKERS, F .
JOURNAL OF NUMBER THEORY, 1987, 25 (02) :201-210
[6]   CONGRUENCE PROPERTIES OF APERY NUMBERS [J].
CHOWLA, S ;
COWLES, J ;
COWLES, M .
JOURNAL OF NUMBER THEORY, 1980, 12 (02) :188-190
[7]   SOME CONGRUENCE PROPERTIES OF 3 WELL-KNOWN SEQUENCES - 2 NOTES [J].
COWLES, J .
JOURNAL OF NUMBER THEORY, 1980, 12 (01) :84-86
[8]  
Euler L., 1785, OPUSC ANAL, V2, P91
[9]   SOME CONGRUENCES FOR APERY NUMBERS [J].
GESSEL, I .
JOURNAL OF NUMBER THEORY, 1982, 14 (03) :362-368
[10]   Special values of the spectral zeta function of the non-commutative harmonic oscillator and confluent Heun equations [J].
Ichinose, T ;
Wakayama, M .
KYUSHU JOURNAL OF MATHEMATICS, 2005, 59 (01) :39-100