A MONOTONIC STARTER FOR SOLVING THE HYPERBOLIC KEPLER EQUATION BY NEWTON'S METHOD

被引:0
作者
Elipe, A. [1 ,2 ]
Montijano, J. I. [3 ]
Randez, L. [3 ]
Calvo, M. [3 ]
机构
[1] Univ Zaragoza, Grp Mecan Espacial IUMA, E-50009 Zaragoza, Spain
[2] Univ Zaragoza, Ctr Univ Defensa, E-50009 Zaragoza, Spain
[3] Univ Zaragoza, Appl Math IUMA, E-50009 Zaragoza, Spain
来源
ASTRODYNAMICS 2018, PTS I-IV | 2019年 / 167卷
关键词
CONVERGENCE; BOUNDS;
D O I
暂无
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
This communication deals with the iterative solution of the sine hyperbolic Kepler's equation (SHK): F-g(S) = S - g arcsinh(S) - L = 0. Since this function is monotonic increasing and convex, any starter value S-0 such that F-g(S-0) > 0, leads to a Newton's sequence S-j monotic decreasing to the exact solution of SKE equation and therefore has some advantages over non monotonic starters. Because of this, we are able to construct a monotonic starter such that minimizes the computational cost and that guarantees super-convergence (q-convergence) by analyzing the error estimates of Newton's iteration. In contrast with other starters in which the quality is assessed by extensive numerical experiments, here we use theoretical tools to reach super-convergence.
引用
收藏
页码:57 / 71
页数:15
相关论文
共 21 条
[1]  
[Anonymous], 1968, MATH COMPUT
[2]   Expanding the applicability of Newton's method using Smale's α-theory [J].
Argyros, Ioannis K. ;
Hilout, Said ;
Khattri, Sanjay K. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 261 :183-200
[3]   Approximate solutions of the hyperbolic Kepler equation [J].
Avendano, Martin ;
Martin-Molina, Veronica ;
Ortigas-Galindo, Jorge .
CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2015, 123 (04) :435-451
[4]  
Avendano M, 2014, CELEST MECH DYN ASTR, V119, P27, DOI 10.1007/s10569-014-9545-8
[5]  
Dedieu J.-P, 2006, MATH APPL, V54
[6]  
DEUFLHARD P., 2004, SPR S COMP, V35
[7]  
Ebaid A., 2017, ACTA ASTRONAUTICA, V138
[8]   An analysis of the convergence of Newton iterations for solving elliptic Kepler's equation [J].
Elipe, A. ;
Montijan, J. I. ;
Randez, L. ;
Calvo, M. .
CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2017, 129 (04) :415-432
[9]  
Fukushima T., 1977, CELEST MECH DYN ASTR, V68, P121
[10]   THE HYPERBOLIC KEPLER EQUATION (AND THE ELLIPTIC EQUATION REVISITED) [J].
Gooding, R. H. ;
Odell, A. W. .
CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1988, 44 (03) :267-282