A New Characterization of the Mappings of Bounded Length Distortion

被引:2
作者
Hajlasz, Piotr [1 ]
Malekzadeh, Soheil [1 ]
机构
[1] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
基金
美国国家科学基金会;
关键词
MAPS;
D O I
10.1093/imrn/rnv108
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we present a new characterization of the mappings of bounded length distortion (BLD for short). In the original geometric definition, it is assumed that a BLD mapping is open, discrete, and sense-preserving. We prove that the first two of the three conditions are redundant and the sense-preserving condition can be replaced by a weaker assumption that the Jacobian is nonnegative.
引用
收藏
页码:13238 / 13244
页数:7
相关论文
共 14 条
  • [1] Drasin D., 2013, ACTA MATH
  • [2] On Conditions for Unrectifiability of a Metric Space
    Hajlasz, Piotr
    Malekzadeh, Soheil
    [J]. ANALYSIS AND GEOMETRY IN METRIC SPACES, 2015, 3 (01): : 1 - 14
  • [3] BLD-mappings in W2,2 are locally invertible
    Heinonen, J
    Kilpeläinen, T
    [J]. MATHEMATISCHE ANNALEN, 2000, 318 (02) : 391 - 396
  • [4] Heinonen J, 2002, DUKE MATH J, V114, P15
  • [5] Heinonen J, 2002, DUKE MATH J, V113, P465
  • [6] Quasiregular maps S-3->S-3 with wild branch sets
    Heinonen, J
    Rickman, S
    [J]. TOPOLOGY, 1998, 37 (01) : 1 - 24
  • [7] Flat forms, bi-Lipschitz parametrizations, and smoothability of manifolds
    Heinonen, Juha
    Keith, Stephen
    [J]. PUBLICATIONS MATHEMATIQUES DE L IHES, 2011, (113): : 1 - 37
  • [8] HEINONEN TK, 1992, NAGOYA MATH J, V125, P115
  • [9] Le Donne E, 2014, NEW YORK J MATH, V20, P209
  • [10] Lipschitz and path isometric embeddings of metric spaces
    Le Donne, Enrico
    [J]. GEOMETRIAE DEDICATA, 2013, 166 (01) : 47 - 66