A New Characterization of the Mappings of Bounded Length Distortion

被引:2
作者
Hajlasz, Piotr [1 ]
Malekzadeh, Soheil [1 ]
机构
[1] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
基金
美国国家科学基金会;
关键词
MAPS;
D O I
10.1093/imrn/rnv108
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we present a new characterization of the mappings of bounded length distortion (BLD for short). In the original geometric definition, it is assumed that a BLD mapping is open, discrete, and sense-preserving. We prove that the first two of the three conditions are redundant and the sense-preserving condition can be replaced by a weaker assumption that the Jacobian is nonnegative.
引用
收藏
页码:13238 / 13244
页数:7
相关论文
共 14 条
[1]  
Drasin D., 2013, ACTA MATH
[2]   On Conditions for Unrectifiability of a Metric Space [J].
Hajlasz, Piotr ;
Malekzadeh, Soheil .
ANALYSIS AND GEOMETRY IN METRIC SPACES, 2015, 3 (01) :1-14
[3]   BLD-mappings in W2,2 are locally invertible [J].
Heinonen, J ;
Kilpeläinen, T .
MATHEMATISCHE ANNALEN, 2000, 318 (02) :391-396
[4]  
Heinonen J, 2002, DUKE MATH J, V114, P15
[5]  
Heinonen J, 2002, DUKE MATH J, V113, P465
[6]   Quasiregular maps S-3->S-3 with wild branch sets [J].
Heinonen, J ;
Rickman, S .
TOPOLOGY, 1998, 37 (01) :1-24
[7]   Flat forms, bi-Lipschitz parametrizations, and smoothability of manifolds [J].
Heinonen, Juha ;
Keith, Stephen .
PUBLICATIONS MATHEMATIQUES DE L IHES, 2011, (113) :1-37
[8]  
HEINONEN TK, 1992, NAGOYA MATH J, V125, P115
[9]  
Le Donne E, 2014, NEW YORK J MATH, V20, P209
[10]   Lipschitz and path isometric embeddings of metric spaces [J].
Le Donne, Enrico .
GEOMETRIAE DEDICATA, 2013, 166 (01) :47-66