Refining strategies to translate genome editing to the clinic

被引:189
作者
Cornu, Tatjana I. [1 ,2 ]
Mussolino, Claudio [1 ,2 ]
Cathomen, Toni [1 ,2 ,3 ]
机构
[1] Univ Freiburg, Med Ctr, Inst Cell & Gene Therapy, Freiburg, Germany
[2] Univ Freiburg, Med Ctr, Ctr Chron Immunodeficiency, Freiburg, Germany
[3] Univ Freiburg, Fac Med, Freiburg, Germany
基金
欧盟地平线“2020”;
关键词
ZINC-FINGER NUCLEASES; HOMOLOGY-DIRECTED REPAIR; HUMAN HEMATOPOIETIC STEM; IN-VIVO; GENE-THERAPY; DNA-CLEAVAGE; MOUSE MODEL; T-CELLS; WIDE SPECIFICITIES; SYSTEM ENABLES;
D O I
10.1038/nm.4313
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recent progress in developing programmable nucleases, such as zinc-finger nucleases, transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeat (CRISPR)-Cas nucleases, have paved the way for gene editing to enter clinical practice. This translation is a result of combining high nuclease activity with high specificity and successfully applying this technology in various preclinical disease models, including infectious disease, primary immunodeficiencies, hemoglobinopathies, hemophilia and muscular dystrophy. Several clinical gene-editing trials, both ex vivo and in vivo, have been initiated in the past 2 years, including studies that aim to knockout genes as well as to add therapeutic transgenes. Here we discuss the advances made in the gene-editing field in recent years, and specify priorities that need to be addressed to expand therapeutic genome editing to further disease entities.
引用
收藏
页码:415 / 423
页数:9
相关论文
共 99 条
[1]   Inheritable Silencing of Endogenous Genes by Hit-and-Run Targeted Epigenetic Editing [J].
Amabile, Angelo ;
Migliara, Alessandro ;
Capasso, Paola ;
Biffi, Mauro ;
Cittaro, Davide ;
Naldini, Luigi ;
Lombardo, Angelo .
CELL, 2016, 167 (01) :219-+
[2]   Treatment of ocular disorders by gene therapy [J].
Angeles Solinis, M. ;
del Pozo-Rodriguez, Ana ;
Apaolaza, Paola S. ;
Rodriguez-Gascon, Alicia .
EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS, 2015, 95 :331-342
[3]  
Avalle Lidia, 2012, JAKSTAT, V1, P65, DOI 10.4161/jkst.20045
[4]   Chance or necessity? Insertional mutagenesis in gene therapy and its consequences [J].
Baum, C ;
von Kalle, C ;
Staal, FJT ;
Li, ZX ;
Fehse, B ;
Schmidt, M ;
Weerkamp, F ;
Karlsson, S ;
Wagemaker, G ;
Williams, DA .
MOLECULAR THERAPY, 2004, 9 (01) :5-13
[5]   Inactivation of Hepatitis B Virus Replication in Cultured Cells and In Vivo with Engineered Transcription Activator-Like Effector Nucleases [J].
Bloom, Kristie ;
Ely, Abdullah ;
Mussolino, Claudio ;
Cathomen, Toni ;
Arbuthnot, Patrick .
MOLECULAR THERAPY, 2013, 21 (10) :1889-1897
[6]   BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis [J].
Canver, Matthew C. ;
Smith, Elenoe C. ;
Sher, Falak ;
Pinello, Luca ;
Sanjana, Neville E. ;
Shalem, Ophir ;
Chen, Diane D. ;
Schupp, Patrick G. ;
Vinjamur, Divya S. ;
Garcia, Sara P. ;
Luc, Sidinh ;
Kurita, Ryo ;
Nakamura, Yukio ;
Fujiwara, Yuko ;
Maeda, Takahiro ;
Yuan, Guo-Cheng ;
Zhang, Feng ;
Orkin, Stuart H. ;
Bauer, Daniel E. .
NATURE, 2015, 527 (7577) :192-+
[7]   ALTERING THE GENOME BY HOMOLOGOUS RECOMBINATION [J].
CAPECCHI, MR .
SCIENCE, 1989, 244 (4910) :1288-1292
[8]   Genome Engineering with Targetable Nucleases [J].
Carroll, Dana .
ANNUAL REVIEW OF BIOCHEMISTRY, VOL 83, 2014, 83 :409-439
[9]   Genome Engineering With Zinc-Finger Nucleases [J].
Carroll, Dana .
GENETICS, 2011, 188 (04) :773-782
[10]   Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases [J].
Cho, Seung Woo ;
Kim, Sojung ;
Kim, Yongsub ;
Kweon, Jiyeon ;
Kim, Heon Seok ;
Bae, Sangsu ;
Kim, Jin-Soo .
GENOME RESEARCH, 2014, 24 (01) :132-141