Optimal second order sliding mode control for nonlinear uncertain systems

被引:52
作者
Das, Madhulika [1 ]
Mahanta, Chitralekha [1 ]
机构
[1] Indian Inst Technol Guwahati, Dept Elect & Elect Engn, Gauhati 781039, India
关键词
Optimal control; Control Lyapunov function; Integral sliding mode; Terminal sliding mode; Chattering mitigation; CONTROL-LYAPUNOV FUNCTION; TRACKING CONTROL; INVERTED-PENDULUM; BOUNDARY-LAYER; DESIGN;
D O I
10.1016/j.isatra.2014.03.013
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a chattering free optimal second order sliding mode control (OSOSMC) method is proposed to stabilize nonlinear systems affected by uncertainties. The nonlinear optimal control strategy is based on the control Lyapunov function (CLF). For ensuring robustness of the optimal controller in the presence of parametric uncertainty and external disturbances, a sliding mode control scheme is realized by combining an integral and a terminal sliding surface. The resulting second order sliding mode can effectively reduce chattering in the control input. Simulation results confirm the supremacy of the proposed optimal second order sliding mode control over some existing sliding mode controllers in controlling nonlinear systems affected by uncertainty. (C) 2014 ISA. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1191 / 1198
页数:8
相关论文
共 56 条
[21]   Adaptive terminal sliding-mode control strategy for DC-DC buck converters [J].
Komurcugil, Hasan .
ISA TRANSACTIONS, 2012, 51 (06) :673-681
[22]   Sliding mode control with self-tuning law for uncertain nonlinear systems [J].
Kuo, Tzu-Chun ;
Huang, Ying-Jeh ;
Chang, Shin-Hung .
ISA TRANSACTIONS, 2008, 47 (02) :171-178
[23]   Higher order sliding mode control based on integral sliding mode [J].
Laghrouche, Salah ;
Plestan, Franck ;
Glumineau, Alain .
AUTOMATICA, 2007, 43 (03) :531-537
[24]  
Lewis F. L., 2012, OPTIMAL CONTROL
[25]   Dynamic optimal sliding-mode control for six-DOF follow-up robust tracking of active satellite [J].
Li Yuankai ;
Jing Zhongliang ;
Hu Shiqiang .
ACTA ASTRONAUTICA, 2011, 69 (7-8) :559-570
[26]   Global sliding mode control and application in chaotic systems [J].
Liu, Leipo ;
Han, Zhengzhi ;
Li, Wenlin .
NONLINEAR DYNAMICS, 2009, 56 (1-2) :193-198
[27]   Nonlinear sliding surface based second order sliding mode controller for uncertain linear systems [J].
Mondal, Sanjoy ;
Mahanta, Chitralekha .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (09) :3760-3769
[28]   Nonlinear closed loop optimal control: A modified state-dependent Riccati equation [J].
Nekoo, S. Rafee .
ISA TRANSACTIONS, 2013, 52 (02) :285-290
[29]   Robust integral sliding mode control for uncertain stochastic systems with time-varying delay [J].
Niu, YG ;
Ho, DWC ;
Lam, J .
AUTOMATICA, 2005, 41 (05) :873-880
[30]   A Nonlinear Optimal Control Approach Based on the Control-Lyapunov Function for an AC/DC Converter Used in Electric Vehicles [J].
Pahlevaninezhad, Majid ;
Das, Pritam ;
Drobnik, Josef ;
Moschopoulos, Gerry ;
Jain, Praveen K. ;
Bakhshai, Alireza .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2012, 8 (03) :596-614