Optimal second order sliding mode control for nonlinear uncertain systems

被引:52
作者
Das, Madhulika [1 ]
Mahanta, Chitralekha [1 ]
机构
[1] Indian Inst Technol Guwahati, Dept Elect & Elect Engn, Gauhati 781039, India
关键词
Optimal control; Control Lyapunov function; Integral sliding mode; Terminal sliding mode; Chattering mitigation; CONTROL-LYAPUNOV FUNCTION; TRACKING CONTROL; INVERTED-PENDULUM; BOUNDARY-LAYER; DESIGN;
D O I
10.1016/j.isatra.2014.03.013
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a chattering free optimal second order sliding mode control (OSOSMC) method is proposed to stabilize nonlinear systems affected by uncertainties. The nonlinear optimal control strategy is based on the control Lyapunov function (CLF). For ensuring robustness of the optimal controller in the presence of parametric uncertainty and external disturbances, a sliding mode control scheme is realized by combining an integral and a terminal sliding surface. The resulting second order sliding mode can effectively reduce chattering in the control input. Simulation results confirm the supremacy of the proposed optimal second order sliding mode control over some existing sliding mode controllers in controlling nonlinear systems affected by uncertainty. (C) 2014 ISA. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1191 / 1198
页数:8
相关论文
共 56 条
[1]   Robust nonlinear speed control of PM synchronous motor using boundary layer integral sliding mode control technique [J].
Baik, IC ;
Kim, KH ;
Youn, MJ .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2000, 8 (01) :47-54
[2]   Optimal sliding mode control of single degree-of-freedom hysteretic structural system [J].
Baradaran-nia, Mehdi ;
Afizadeh, Ghasem ;
Khanmohammadi, Sohrab ;
Azar, Bahman Farahmand .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (11) :4455-4466
[3]   Sliding mode controller design for linear systems with unmeasured states [J].
Basin, Michael ;
Rodriguez-Ramirez, Pablo .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2012, 349 (04) :1337-1349
[4]   Sliding mode optimal control for linear systems [J].
Basin, Michael ;
Rodriguez-Ramirez, Pablo ;
Ferrara, Antonella ;
Calderon-Alvarez, Dario .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2012, 349 (04) :1350-1363
[5]   Analysis and design of integral sliding manifolds for systems with unmatched perturbations [J].
Castanos, Fernando ;
Fridman, Leonid .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2006, 51 (05) :853-858
[6]   Robust Nonsingular Terminal Sliding-Mode Control for Nonlinear Magnetic Bearing System [J].
Chen, Syuan-Yi ;
Lin, Faa-Jeng .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2011, 19 (03) :636-643
[7]   A Third-Order Sliding-Mode Controller for a Stepper Motor [J].
Defoort, Michael ;
Nollet, Frederic ;
Floquet, Thierry ;
Perruquetti, Wilfrid .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2009, 56 (09) :3337-3346
[8]   A novel higher order sliding mode control scheme [J].
Defoort, Michael ;
Floquet, Thierry ;
Kokosy, Annemarie ;
Perruquetti, Wilfrid .
SYSTEMS & CONTROL LETTERS, 2009, 58 (02) :102-108
[9]  
Dong R, 2011, CHIN CONT DECIS CONF, P2098, DOI 10.1109/CCDC.2011.5968551
[10]   Optimal Sliding Mode Control for Uncertain Systems with Time Delay [J].
Dong, Rui ;
Tang, Gongyou ;
Guo, Yunrui .
2010 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-5, 2010, :2814-+