Stability of solutions for two classes of fractional differential equations of Lane-Emden type

被引:3
作者
Gouari, Yazid [1 ]
Dahmani, Zoubir [1 ]
机构
[1] UMAB Univ Abdelhamid Bni Badis, Fac Exact Sci & Informat FSEI, Lab LPAM, Mostaganem 27000, Algeria
关键词
Caputo derivative; Lane-Emden equation existence of solution; Ulam-Hyers stability; EXISTENCE;
D O I
10.1080/09720502.2020.1856343
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By introducing some appropriate definitions for Clam type stabilities, in this paper, we discuss the Liam and Hyers and the generalized Clam and Hyers stabilities for two different classes of nonlinear singular fractional integro-differential problems of Lane and Emden type. The existence and uniqueness results for our two classes have already been published respectively in Math. Method. Appl. Sci., 2020, and Moroc. J. Pure Appl. Anal., 2020.
引用
收藏
页码:2087 / 2099
页数:13
相关论文
共 25 条
[1]   Uniqueness and Ulam stabilities results for partial fractional differential equations with not instantaneous impulses [J].
Abbas, Said ;
Benchohra, Mouffak .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 257 :190-198
[2]  
Abdellaoui M.A., 2015, IJNAA, V6
[3]   Positive solutions for mixed problems of singular fractional differential equations [J].
Agarwal, Ravi P. ;
O'Regan, Donal ;
Stanek, Svatoslav .
MATHEMATISCHE NACHRICHTEN, 2012, 285 (01) :27-41
[4]   Modeling some real phenomena by fractional differential equations [J].
Almeida, Ricardo ;
Bastos, Nuno R. O. ;
Monteiro, M. Teresa T. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (16) :4846-4855
[5]  
[Anonymous], 1907, Gaskugeln
[6]  
Bahous Y., 2019, INDIAN J IND APPL MA, V10
[7]   Existence and multiplicity of positive solutions for singular fractional boundary value problems [J].
Bai, Zhanbing ;
Sun, Weichen .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 63 (09) :1369-1381
[8]  
Bekkouche Z., 2018, INT J OPEN PROBLEMS, V11
[9]   A class of nonlinear singular differential equations [J].
Benzidane, Abdelkader ;
Dahmani, Zoubir .
JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2019, 22 (06) :991-1007
[10]  
Dahmani Z., 2015, COMPUTER SCI, V5