Experimental Test of the State Estimation-Reversal Tradeoff Relation in General Quantum Measurements

被引:15
作者
Chen, Geng [1 ,2 ]
Zou, Yang [1 ,2 ]
Xu, Xiao-Ye [1 ,2 ]
Tang, Jian-Shun [1 ,2 ]
Li, Yu-Long [1 ,2 ]
Xu, Jin-Shi [1 ,2 ]
Han, Yong-Jian [1 ,2 ]
Li, Chuan-Feng [1 ,2 ]
Guo, Guang-Can [1 ,2 ]
Ni, Hai-Qiao [3 ]
Yu, Ying [3 ]
Li, Mi-Feng [3 ]
Zha, Guo-Wei [3 ]
Niu, Zhi-Chuan [3 ]
Kedem, Yaron [4 ]
机构
[1] Univ Sci & Technol China, CAS, Key Lab Quantum Informat, Hefei 230026, Peoples R China
[2] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China
[3] Chinese Acad Sci, Inst Semicond, Natl Lab Superlattices & Microstruct, Beijing 100083, Peoples R China
[4] Nord Inst Theoret Phys NORDITA, S-10691 Stockholm, Sweden
来源
PHYSICAL REVIEW X | 2014年 / 4卷 / 05期
基金
欧洲研究理事会; 中国国家自然科学基金;
关键词
UNCERTAINTY RELATION;
D O I
10.1103/PhysRevX.4.021043
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
When a measurement has limited strength, only partial information, regarding the initial state, is extracted, and, correspondingly, there is a probability to reverse its effect on the system and retrieve the original state. Recently, a clear and direct quantitative description of this complementary relationship, in terms of a tradeoff relation, was developed by Y. K. Cheong and S. W. Lee. [Phys. Rev. Lett. 109, 150402 (2012)]. Here, this tradeoff relation is experimentally verified using polarization-encoded single photons from a quantum dot. Measurement operators representing a complete range, from not affecting the system to a projection to a single polarization state, are realized. In addition, for each measurement operator, an optimal reversal operator is also implemented. The upper bound of the tradeoff relation is mapped to experimental parameters representing the measurement strength. Our results complement the theoretical work and provide a hands-on characterization of general quantum measurements.
引用
收藏
页数:7
相关论文
共 33 条
[1]  
[Anonymous], 1927, Z. Phys. A, DOI [10.1007/bf01391200, DOI 10.1007/BF01391200]
[2]   ON SIMULTANEOUS MEASUREMENT OF A PAIR OF CONJUGATE OBSERVABLES [J].
ARTHURS, E ;
KELLY, JL .
BELL SYSTEM TECHNICAL JOURNAL, 1965, 44 (04) :725-+
[3]   QUANTUM CORRELATIONS - A GENERALIZED HEISENBERG UNCERTAINTY RELATION [J].
ARTHURS, E ;
GOODMAN, MS .
PHYSICAL REVIEW LETTERS, 1988, 60 (24) :2447-2449
[4]   Quantum information cannot be completely hidden in correlations: Implications for the black-hole information paradox [J].
Braunstein, Samuel L. ;
Pati, Arun K. .
PHYSICAL REVIEW LETTERS, 2007, 98 (08)
[5]   Global information balance in quantum measurements [J].
Buscemi, Francesco ;
Hayashi, Masahito ;
Horodecki, Michal .
PHYSICAL REVIEW LETTERS, 2008, 100 (21)
[6]   Proof of Heisenberg's Error-Disturbance Relation [J].
Busch, Paul ;
Lahti, Pekka ;
Werner, Reinhard F. .
PHYSICAL REVIEW LETTERS, 2013, 111 (16)
[7]   Balance Between Information Gain and Reversibility in Weak Measurement [J].
Cheong, Yong Wook ;
Lee, Seung-Woo .
PHYSICAL REVIEW LETTERS, 2012, 109 (15)
[8]   Certainty in Heisenberg's uncertainty principle: Revisiting definitions for estimation errors and disturbance [J].
Dressel, Justin ;
Nori, Franco .
PHYSICAL REVIEW A, 2014, 89 (02)
[9]   Fringe visibility and which-way information: An inequality [J].
Englert, BG .
PHYSICAL REVIEW LETTERS, 1996, 77 (11) :2154-2157
[10]  
Erhart J, 2012, NAT PHYS, V8, P185, DOI [10.1038/NPHYS2194, 10.1038/nphys2194]