Method for finding mechanism and activation energy of magnetic transitions, applied to skyrmion and antivortex annihilation

被引:159
作者
Bessarab, Pavel F. [1 ,2 ]
Uzdin, Valery M. [2 ,3 ]
Jonsson, Hannes [4 ,5 ]
机构
[1] Royal Inst Technol KTH, Dept Mat & Nanophys, SE-16440 Kista, Sweden
[2] St Petersburg State Univ, Dept Phys, St Petersburg 198504, Russia
[3] St Petersburg Natl Res Univ Informat Technol Mech, St Petersburg 197101, Russia
[4] Univ Iceland, Fac Phys Sci, Reykjavik, Iceland
[5] Aalto Univ, Dept Appl Phys, FIN-00076 Espoo, Finland
基金
芬兰科学院;
关键词
Magnetic transitions; Minimum energy path; Mechanism; Activation energy; ELASTIC BAND METHOD; SADDLE-POINTS; EXCHANGE INTERACTIONS; BARRIERS; ALGORITHMS; DYNAMICS; REVERSAL; LATTICE; MOTION; PATHS;
D O I
10.1016/j.cpc.2015.07.001
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A method for finding minimum energy paths of transitions in magnetic systems is presented. The path is optimized with respect to orientation of the magnetic vectors while their magnitudes are fixed or obtained from separate calculations. The curvature of the configuration space is taken into account by: (1) using geodesics to evaluate distances and displacements of the system during the optimization, and (2) projecting the path tangent and the magnetic force on the tangent space of the manifold defined by all possible orientations of the magnetic vectors. The method, named geodesic nudged elastic band (GNEB), and its implementation are illustrated with calculations of complex transitions involving annihilation and creation of skyrmion and antivortex states. The lifetime of the latter was determined within harmonic transition state theory using a noncollinear extension of the Alexander-Anderson model. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:335 / 347
页数:13
相关论文
共 61 条
  • [1] Steepest descent algorithms for optimization under unitary matrix constraint
    Abrudan, Traian E.
    Eriksson, Jan
    Koivunen, Visa
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008, 56 (03) : 1134 - 1147
  • [2] Spin dynamics in magnets: Equation of motion and finite temperature effects
    Antropov, VP
    Katsnelson, MI
    Harmon, BN
    vanSchilfgaarde, M
    Kusnezov, D
    [J]. PHYSICAL REVIEW B, 1996, 54 (02) : 1019 - 1035
  • [3] Atkinson K.E., 1991, An Introduction to Numerical Analysis, V2nd
  • [4] Berkov D.V., 2007, Handbook of Magnetism and Advanced Magnetic Materials, volume 2 of Micromagnetism, V2, P795
  • [5] Numerical calculation of the energy barrier distribution in disordered many-particle systems: the path integral method
    Berkov, DV
    [J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1998, 186 (1-2) : 199 - 213
  • [6] Calculations of magnetic states and minimum energy paths of transitions using a noncollinear extension of the Alexander-Anderson model and a magnetic force theorem
    Bessarab, Pavel F.
    Uzdin, Valery M.
    Jonsson, Hannes
    [J]. PHYSICAL REVIEW B, 2014, 89 (21)
  • [7] Size and Shape Dependence of Thermal Spin Transitions in Nanoislands
    Bessarab, Pavel F.
    Uzdin, Valery M.
    Jonsson, Hannes
    [J]. PHYSICAL REVIEW LETTERS, 2013, 110 (02)
  • [8] Harmonic transition-state theory of thermal spin transitions
    Bessarab, Pavel F.
    Uzdin, Valery M.
    Jonsson, Hannes
    [J]. PHYSICAL REVIEW B, 2012, 85 (18):
  • [9] Chiral magnetic order at surfaces driven by inversion asymmetry
    Bode, M.
    Heide, M.
    von Bergmann, K.
    Ferriani, P.
    Heinze, S.
    Bihlmayer, G.
    Kubetzka, A.
    Pietzsch, O.
    Bluegel, S.
    Wiesendanger, R.
    [J]. NATURE, 2007, 447 (7141) : 190 - 193
  • [10] Topological effects in nanomagnetism: from superparamagnetism to chiral quantum solitons
    Braun, Hans-Benjamin
    [J]. ADVANCES IN PHYSICS, 2012, 61 (01) : 1 - 116