Estimators for the Drift of Subfractional Brownian Motion

被引:17
|
作者
Shen, Guangjun [1 ]
Yan, Litan [2 ]
机构
[1] Anhui Normal Univ, Dept Math, Wuhu 241000, Peoples R China
[2] Donghua Univ, Dept Math, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Maximum likelihood estimator; Subfractional Brownian motion; James-Stein estimator; GAUSSIAN-PROCESSES; LOCAL TIME; RESPECT; SYSTEMS;
D O I
10.1080/03610926.2012.697243
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we consider, using technique based on Girsanov theorem, the problem of efficient estimation for the drift of subfractional Brownian motion S-H colon equals (S-t(H))(t is an element of [0, T]). We also construct a class of biased estimators of James-Stein type which dominate, under the usual quadratic risk, the natural maximum likelihood estimator.
引用
收藏
页码:1601 / 1612
页数:12
相关论文
共 50 条
  • [1] An Approximation of Subfractional Brownian Motion
    Shen, Guangjun
    Yan, Litan
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2014, 43 (09) : 1873 - 1886
  • [2] Random walks and subfractional Brownian motion
    Dai, Hongshuai
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2016, 45 (10) : 2834 - 2841
  • [3] A note on approximation to subfractional brownian motion
    XIA Liang-wen
    ZHANG Jing-hong
    安徽工程大学学报, 2014, 29 (04) : 85 - 91
  • [4] POWER VARIATION OF SUBFRACTIONAL BROWNIAN MOTION AND APPLICATION
    申广君
    闫理坦
    刘俊峰
    Acta Mathematica Scientia, 2013, 33 (04) : 901 - 912
  • [5] On the nth-Order subfractional Brownian motion
    El Omari, Mohamed
    Mabdaoui, Mohamed
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2023, 52 (05): : 1396 - 1407
  • [6] POWER VARIATION OF SUBFRACTIONAL BROWNIAN MOTION AND APPLICATION
    Shen, Guangjun
    Yan, Litan
    Liu, Junfeng
    ACTA MATHEMATICA SCIENTIA, 2013, 33 (04) : 901 - 912
  • [7] The Structure of Autocovariance Matrix of Discrete Time Subfractional Brownian Motion
    Jiang, Guo
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2018, 2018
  • [8] A law of iterated logarithm for the subfractional Brownian motion and an application
    Qi, Hongsheng
    Yan, Litan
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [9] A law of iterated logarithm for the subfractional Brownian motion and an application
    Hongsheng Qi
    Litan Yan
    Journal of Inequalities and Applications, 2018
  • [10] On the Self-Intersection Local Time of Subfractional Brownian Motion
    Liu, Junfeng
    Peng, Zhihang
    Tang, Donglei
    Cang, Yuquan
    ABSTRACT AND APPLIED ANALYSIS, 2012,