Semi-supervised Learning Algorithm for Binary Relevance Multi-label Classification

被引:0
作者
Svec, Jan [1 ]
机构
[1] Univ W Bohemia, Dept Cybernet, New Technol Informat Soc, Univ 22, Plzen 30614, Czech Republic
来源
WEB INFORMATION SYSTEMS ENGINEERING - WISE 2014 WORKSHOPS | 2015年 / 9051卷
关键词
Multi-label classification; Semi-supervised learning; Linear model;
D O I
10.1007/978-3-319-20370-6_1
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The presented paper describes our model for the WISE 2014 challenge multi-label classification task. The goal of the challenge was to implement a multi-label text classification model which maximizes the mean F-1 score on a private test data. The described method involves a binary relevance scheme with linear classifiers trained using stochastic gradient descent. A novel method for determining the values of classifiers' meta-parameters was developed. In addition, our solution employs the semi-supervised learning which significantly improves the evaluation score. The presented solution won the third place in the challenge. The results are discussed and the supervised and semi-supervised approaches are compared.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 12 条
[1]  
Fan RE, 2008, J MACH LEARN RES, V9, P1871
[2]  
Godbole S, 2004, LECT NOTES ARTIF INT, V3056, P22
[3]   SPOKEN LANGUAGE UNDERSTANDING FROM UNALIGNED DATA USING DISCRIMINATIVE CLASSIFICATION MODELS [J].
Mairesse, F. ;
Gasic, M. ;
Jurcicek, F. ;
Keizer, S. ;
Thomson, B. ;
Yu, K. ;
Young, S. .
2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, :4749-4752
[4]  
Matousek J, 2013, INTERSPEECH, P1511
[5]  
Pedregosa F, 2011, J MACH LEARN RES, V12, P2825
[6]  
Skorkovská L, 2013, LECT NOTES COMPUT SC, V8082, P209, DOI 10.1007/978-3-642-40585-3_27
[7]  
Svec J, 2013, INT CONF ACOUST SPEE, P8322, DOI 10.1109/ICASSP.2013.6639288
[8]  
Tsoumakas Grigorios, 2007, International Journal of Data Warehousing and Mining (IJDWM), V3, P1
[9]  
Tsuruoka Y., 2009, ACL AFNLP, P477
[10]  
Zadrozny B., 2002, Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining, P694