Extensions of some results of P. Humbert on Bezout's identity classical orthogonal polynomials

被引:5
作者
Area, I.
Godoy, E. [1 ]
Ronveaux, A.
Zarzo, A.
机构
[1] Univ Vigo, ETS Ingn Ind, Dept Matemat Aplicada 2, Vigo 36200, Spain
[2] Univ Vigo, ETSE Telecomunicac, Dept Matemat Aplicada 2, Vigo 36200, Spain
[3] Univ Catholique Louvain, Dept Math, Unite Anal Math & Mecan, B-1348 Louvain, Belgium
[4] Univ Granada, Fac Ciencias, Inst Carlos I Fis Teor & Computac, E-18071 Granada, Spain
[5] Univ Politecn Madrid, Dept Matemat Aplicada, ETS Ingn Ind, E-28040 Madrid, Spain
关键词
orthogonal polynomials; Bezout identity; second kind functions;
D O I
10.1016/j.cam.2005.09.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the Bezout's identity is analyzed in the context of classical orthogonal polynomials solution of a second order differential equation of hypergeometric type. Differential equations, relation with the starting family as well as recurrence relations and explicit representations are given for the Bezout's pair. Extensions to classical orthogonal polynomials of a discrete variable and their q-analogues are also presented. Applications of these results for the representation of the second kind functions are given. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:212 / 228
页数:17
相关论文
共 29 条
[1]  
ALVAREZNODARSE R, 2003, MONOGRAFIAS SEMINARI
[2]  
Andrews GE, 1999, ENCY MATH ITS APPL, V71
[3]   Hypergeometric type q-difference equations:: Rodrigues type representation for the second kind solution [J].
Area, I ;
Godoy, E ;
Ronveaux, A ;
Zarzo, A .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 173 (01) :81-92
[4]   Minimal recurrence relations for connection coefficients between classical orthogonal polynomials: Discrete case (vol 87, pg 321, 1996) [J].
Area, I ;
Godoy, E ;
Ronveaux, A ;
Zarzo, A .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1998, 89 (02) :309-325
[5]  
Area I, 1999, J SYMB COMPUT, V28, P767, DOI 10.1006/jsco.1998.0338
[6]   ASSOCIATED LAGUERRE AND HERMITE-POLYNOMIALS [J].
ASKEY, R ;
WIMP, J .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1984, 96 :15-37
[7]   Difference equation for associated polynomials on a linear lattice [J].
Atakishiyev, NM ;
Ronveaux, A ;
Wolf, KB .
THEORETICAL AND MATHEMATICAL PHYSICS, 1996, 106 (01) :61-67
[8]  
Bezout E., 1779, THEORIE GEN EQUATION
[9]  
Chihara T, 1978, INTRO ORTHOGONAL POL
[10]   Fourth order q-difference equation for the first associated of the q-classical orthogonal polynomials [J].
Foupouagnigni, M ;
Ronveaux, A ;
Koepf, W .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1999, 101 (1-2) :231-236