Predictive coding is a consequence of energy efficiency in recurrent neural networks

被引:31
作者
Ali, Abdullahi [1 ]
Ahmad, Nasir [1 ]
de Groot, Elgar [1 ,3 ]
van Gerven, Marcel Antonius Johannes [1 ]
Kietzmann, Tim Christian [2 ]
机构
[1] Radboud Univ Nijmegen, Donders Inst Brain Cognit & Behav, Nijmegen, Netherlands
[2] Univ Osnabruck, Inst Cognit Sci, Osnabruck, Germany
[3] Univ Utrecht, Dept Expt Psychol, Utrecht, Netherlands
来源
PATTERNS | 2022年 / 3卷 / 12期
关键词
SLOW FEATURE ANALYSIS; ACTION-POTENTIALS; STATISTICS; PERCEPTION; NEOCORTEX; NEURONS; BRAIN;
D O I
10.1016/j.patter.2022.100639
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Predictive coding is a promising framework for understanding brain function. It postulates that the brain continuously inhibits predictable sensory input, ensuring preferential processing of surprising elements. A central aspect of this view is its hierarchical connectivity, involving recurrent message passing between excitatory bottom-up signals and inhibitory top-down feedback. Here we use computational modeling to demonstrate that such architectural hardwiring is not necessary. Rather, predictive coding is shown to emerge as a consequence of energy efficiency. When training recurrent neural networks to minimize their energy consumption while operating in predictive environments, the networks self-organize into prediction and error units with appropriate inhibitory and excitatory interconnections and learn to inhibit predictable sensory input. Moving beyond the view of purely top-down-driven predictions, we demonstrate, via virtual lesioning experiments, that networks perform predictions on two timescales: fast lateral predictions among sensory units and slower prediction cycles that integrate evidence over time.
引用
收藏
页数:12
相关论文
共 73 条
[1]   Stimulus Predictability Reduces Responses in Primary Visual Cortex [J].
Alink, Arjen ;
Schwiedrzik, Caspar M. ;
Kohler, Axel ;
Singer, Wolf ;
Muckli, Lars .
JOURNAL OF NEUROSCIENCE, 2010, 30 (08) :2960-2966
[2]   Energy-Efficient Action Potentials in Hippocampal Mossy Fibers [J].
Alle, Henrik ;
Roth, Arnd ;
Geiger, Joerg R. P. .
SCIENCE, 2009, 325 (5946) :1405-1408
[3]  
[Anonymous], 2009, Rep. TR-2009
[4]   An energy budget for signaling in the grey matter of the brain [J].
Attwell, D ;
Laughlin, SB .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2001, 21 (10) :1133-1145
[5]   Discovering Event Structure in Continuous Narrative Perception and Memory [J].
Baldassano, Christopher ;
Chen, Janice ;
Zadbood, Asieh ;
Pillow, Jonathan W. ;
Hasson, Uri ;
Norman, Kenneth A. .
NEURON, 2017, 95 (03) :709-+
[6]  
Barlow H.B., 1961, POSSIBLE PRINCIPLES, V1
[7]   Canonical Microcircuits for Predictive Coding [J].
Bastos, Andre M. ;
Usrey, W. Martin ;
Adams, Rick A. ;
Mangun, George R. ;
Fries, Pascal ;
Friston, Karl J. .
NEURON, 2012, 76 (04) :695-711
[8]   AN INFORMATION MAXIMIZATION APPROACH TO BLIND SEPARATION AND BLIND DECONVOLUTION [J].
BELL, AJ ;
SEJNOWSKI, TJ .
NEURAL COMPUTATION, 1995, 7 (06) :1129-1159
[9]   Going in circles is the way forward: the role of recurrence in visual inference [J].
Bergen, Ruben S. van ;
Kriegeskorte, Nikolaus .
CURRENT OPINION IN NEUROBIOLOGY, 2020, 65 :176-193
[10]   Slow feature analysis yields a rich repertoire of complex cell properties [J].
Berkes, P ;
Wiskott, L .
JOURNAL OF VISION, 2005, 5 (06) :579-602