Thomas Bayes' walk on manifolds

被引:31
作者
Castillo, Ismael [1 ,2 ]
Kerkyacharian, Gerard [3 ]
Picard, Dominique [3 ]
机构
[1] Univ Paris 06, CNRS, LPMA, Paris, France
[2] Univ Paris 07, CNRS, LPMA, Paris, France
[3] Univ Paris 07, LPMA, Paris, France
关键词
Bayesian nonparametrics; Gaussian process priors; Heat kernel; ENTROPY NUMBERS; METRIC ENTROPY; RATES; CONVERGENCE; FRAMES;
D O I
10.1007/s00440-013-0493-0
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Convergence of the Bayes posterior measure is considered in canonical statistical settings where observations sit on a geometrical object such as a compact manifold, or more generally on a compact metric space verifying some conditions. A natural geometric prior based on randomly rescaled solutions of the heat equation is considered. Upper and lower bound posterior contraction rates are derived.
引用
收藏
页码:665 / 710
页数:46
相关论文
共 33 条
[1]   Multivariate Bayesian function estimation [J].
Angers, JF ;
Kim, PT .
ANNALS OF STATISTICS, 2005, 33 (06) :2967-2999
[2]  
[Anonymous], 1971, PRINCETON MATH SER
[3]  
[Anonymous], 1999, Metric structures for Riemannian and nonRiemannian spaces
[4]  
[Anonymous], 2009, AMSIP STUDIES ADV MA
[5]  
[Anonymous], 1980, LOND MATH SOC MONOGR
[6]   Nonparametric Bayesian density estimation on manifolds with applications to planar shapes [J].
Bhattacharya, Abhishek ;
Dunson, David B. .
BIOMETRIKA, 2010, 97 (04) :851-865
[7]   ENTROPY NUMBERS, S-NUMBERS, AND EIGENVALUE PROBLEMS [J].
CARL, B .
JOURNAL OF FUNCTIONAL ANALYSIS, 1981, 41 (03) :290-306
[8]  
CARL B, 1990, CAMBRIDGE TRACTS MAT, V98
[9]   NEEDLES AND STRAW IN A HAYSTACK: POSTERIOR CONCENTRATION FOR POSSIBLY SPARSE SEQUENCES [J].
Castillo, Ismael ;
van der Vaart, Aad .
ANNALS OF STATISTICS, 2012, 40 (04) :2069-2101
[10]   Lower bounds for posterior rates with Gaussian process priors [J].
Castillo, Ismael .
ELECTRONIC JOURNAL OF STATISTICS, 2008, 2 :1281-1299