Enhanced Photonic Spin Hall Effect with a Bimetallic Film Surface Plasmon Resonance

被引:19
|
作者
Jiang, Xing [1 ]
Wang, Qingkai [1 ,2 ]
Guo, Jun [1 ]
Chen, Shuqing [1 ]
Dai, Xiaoyu [1 ]
Xiang, Yuanjiang [1 ]
机构
[1] Shenzhen Univ, SZU NUS Collaborat Innovat Ctr Optoelect Sci & Te, Key Lab Optoelect Devices & Syst, Minist Educ & Guangdong Prov,Coll Optoelect Engn, Shenzhen 518060, Peoples R China
[2] Jiujiang Univ, Coll Sci, Key Lab Microstruct Funct Mat Jiangxi Prov, Jiujiang 332005, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Surface plasmon resonance; Photonic Spin Hall Effect; Transverse shifts; LIGHT;
D O I
10.1007/s11468-017-0652-8
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The surface plasmon resonance (SPR) with the bimetallic film can achieve minimum reflectivity and higher evanescent field enhancement than the SPR configuration with the single gold film, which makes it to be a much better option for enhancing the photonic Spin Hall Effect (SHE). It is found that the thicknesses of silver and gold films have a major impact on the photonic SHE, and the maximal transverse shift of horizontal polarization state can reach to 5.34 mu m near the SPR resonant angle by optimizing the thicknesses of silver and gold films in the bimetallic film. Our results are far greater than the previously reported transverse shifts in the conventional SPR structure. This novel phenomenon is attributed to the higher evanescent field enhancement and the larger refractive index variation gradient of silver/gold bimetallic film. These findings provide us an effective method to manipulate the photonic SHE and therefore establish a strong foundation for developing photonic devices based on photonic SHE.
引用
收藏
页码:1467 / 1473
页数:7
相关论文
共 50 条
  • [31] Surface phonon resonance:A new mechanism for enhancing photonic spin Hall effect and refractive index sensor
    程杰
    汪承龙
    李一铭
    张亚林
    刘胜利
    董鹏
    Chinese Physics B, 2024, 33 (08) : 272 - 280
  • [32] Bimetallic chips for a surface plasmon resonance instrument
    Chen, Y.
    Zheng, R. S.
    Zhang, D. G.
    Lu, Y. H.
    Wang, P.
    Ming, H.
    Luo, Z. F.
    Kan, Q.
    APPLIED OPTICS, 2011, 50 (03) : 387 - 391
  • [33] Enhanced spin Hall effect due to the redshift gaps of photonic hypercrystals
    Xia, Jiaoqiao
    Chen, Yu
    Xiang, Yuanjiang
    OPTICS EXPRESS, 2021, 29 (08) : 12160 - 12168
  • [34] Enhanced and tunable photonic spin Hall effect with optical Tamm states
    Tang, Jiao
    Zhang, Yuting
    Yuan, Hongxia
    Long, Xin
    Jiang, Jie
    Tian, Haishan
    Jiang, Leyong
    JOURNAL OF APPLIED PHYSICS, 2023, 134 (23)
  • [35] Enhanced photonic spin Hall effect with subwavelength topological edge states
    Slobozhanyuk, Alexey P.
    Poddubny, Alexander N.
    Sinev, Ivan S.
    Samusev, Anton K.
    Yu, Ye Feng
    Kuznetsov, Arseniy I.
    Miroshnichenko, Andrey E.
    Kivshar, Yuri S.
    LASER & PHOTONICS REVIEWS, 2016, 10 (04) : 656 - 664
  • [36] Plasmonic Spin-Hall Effect in Surface Plasmon Polariton Focusing
    Dai, Yanan
    Petek, Hrvoje
    ACS PHOTONICS, 2019, 6 (08): : 2005 - +
  • [37] Bimetallic Surface Plasmon Resonance Photonic Crystal Fiber Biosensor Using Refractory Plasmonic Material
    El-Saeed, Ahmed H.
    Khalil, Ahmed E.
    Hameed, Mohamed Farhat O.
    Azab, Mohammad Y.
    Obayya, S. S. A.
    PHYSICS AND SIMULATION OF OPTOELECTRONIC DEVICES XXVII, 2019, 10912
  • [38] High sensitivity gas sensor based on surface exciton polariton enhanced photonic spin Hall effect
    Yang, Weifang
    Ang, L. K.
    Zhang, Wentao
    Han, Jiaguang
    Xu, Yi
    OPTICS EXPRESS, 2023, 31 (16) : 27041 - 27053
  • [39] High-performance bimetallic film surface plasmon resonance sensor based on film thickness optimization
    Chen, Shujing
    Lin, Chengyou
    OPTIK, 2016, 127 (19): : 7514 - 7519
  • [40] Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor
    Ong, BH
    Yuan, XC
    Tjin, SC
    Zhang, JW
    Ng, HM
    SENSORS AND ACTUATORS B-CHEMICAL, 2006, 114 (02) : 1028 - 1034