Effects of data dimension on empirical likelihood

被引:82
作者
Chen, Song Xi [1 ]
Peng, Liang [2 ]
Qin, Ying-Li [1 ]
机构
[1] Iowa State Univ, Dept Stat, Ames, IA 50011 USA
[2] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
Asymptotic normality; Data dimension; Empirical likelihood; High-dimensional data; CONFIDENCE-INTERVALS; TESTS;
D O I
10.1093/biomet/asp037
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We evaluate the effects of data dimension on the asymptotic normality of the empirical likelihood ratio for high-dimensional data under a general multivariate model. Data dimension and dependence among components of the multivariate random vector affect the empirical likelihood directly through the trace and the eigenvalues of the covariance matrix. The growth rates to infinity we obtain for the data dimension improve the rates of Hjort et al. (2008).
引用
收藏
页码:711 / 722
页数:12
相关论文
共 22 条
[1]  
[Anonymous], 1990, GEN MULTIVARIATE ANA
[2]  
[Anonymous], 2003, Introduction to Nessus
[3]  
Bai ZD, 1996, STAT SINICA, V6, P311
[4]   A NOTE ON THE LARGEST EIGENVALUE OF A LARGE DIMENSIONAL SAMPLE COVARIANCE-MATRIX [J].
BAI, ZD ;
SILVERSTEIN, JW ;
YIN, YQ .
JOURNAL OF MULTIVARIATE ANALYSIS, 1988, 26 (02) :166-168
[5]   LIMIT OF THE SMALLEST EIGENVALUE OF A LARGE DIMENSIONAL SAMPLE COVARIANCE-MATRIX [J].
BAI, ZD ;
YIN, YQ .
ANNALS OF PROBABILITY, 1993, 21 (03) :1275-1294
[6]   Combined and least squares empirical likelihood [J].
Brown, BM ;
Chen, SX .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1998, 50 (04) :697-714
[7]   On Bartlett correction of empirical likelihood in the presence of nuisance parameters [J].
Chen, SX ;
Cui, HJ .
BIOMETRIKA, 2006, 93 (01) :215-220
[8]   Empirical likelihood confidence intervals for nonparametric density estimation [J].
Chen, SX .
BIOMETRIKA, 1996, 83 (02) :329-341
[9]   EMPIRICAL LIKELIHOOD IS BARTLETT-CORRECTABLE [J].
DICICCIO, T ;
HALL, P ;
ROMANO, J .
ANNALS OF STATISTICS, 1991, 19 (02) :1053-1061
[10]   METHODOLOGY AND ALGORITHMS OF EMPIRICAL LIKELIHOOD [J].
HALL, P ;
LASCALA, B .
INTERNATIONAL STATISTICAL REVIEW, 1990, 58 (02) :109-127