Lagrangian Torus Fibrations and Homological Mirror Symmetry for the Conifold

被引:18
|
作者
Chan, Kwokwai [1 ]
Pomerleano, Daniel [2 ]
Ueda, Kazushi [3 ]
机构
[1] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
[2] Univ Tokyo, Kavli Inst Phys & Math Universe, Kashiwa, Chiba 2778583, Japan
[3] Univ Tokyo, Grad Sch Math Sci, Meguro Ku, Tokyo 1538914, Japan
关键词
BRAID GROUP-ACTIONS; LEFSCHETZ FIBRATIONS; FLOER COHOMOLOGY; TORIC MANIFOLDS; FIELD-THEORIES; T-DUALITY; CATEGORIES; SINGULARITIES; GENERATORS; ALGEBRAS;
D O I
10.1007/s00220-015-2477-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss homological mirror symmetry for the conifold from the point of view of the Strominger-Yau-Zaslow conjecture.
引用
收藏
页码:135 / 178
页数:44
相关论文
共 50 条
  • [21] Moduli Space in Homological Mirror Symmetry
    Sato, Matsuo
    ADVANCES IN MATHEMATICAL PHYSICS, 2019, 2019
  • [22] An infinite version of homological mirror symmetry
    Neeman, Amnon
    REAL AND COMPLEX SINGULARITIES, 2007, : 290 - 298
  • [23] Birational geometry and homological mirror symmetry
    Katzarkov, Ludmil
    Real and Complex Singularities, 2007, : 176 - 206
  • [24] Remarks on the homological mirror symmetry for tori
    Kobayashi, Kazushi
    JOURNAL OF GEOMETRY AND PHYSICS, 2021, 164
  • [25] Homological Perturbation Theory and Mirror Symmetry
    Jian Zhou
    Acta Mathematica Sinica, 2003, 19 : 695 - 714
  • [26] Homological Mirror Symmetry and Algebraic Cycles
    Katzarkov, Ludmil
    RIEMANNIAN TOPOLOGY AND GEOMETRIC STRUCTURES ON MANIFOLDS, 2009, 271 : 63 - 92
  • [27] HOMOLOGICAL MIRROR SYMMETRY WITHOUT CORRECTION
    Abouzaid, Mohammed
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 34 (04) : 1059 - 1173
  • [28] Generalized Homological Mirror Symmetry and cubics
    L. Katzarkov
    V. Przyjalkowski
    Proceedings of the Steklov Institute of Mathematics, 2009, 264 : 87 - 95
  • [29] Homological mirror symmetry at large volume
    Gammage, Benjamin
    Shende, Vivek
    TUNISIAN JOURNAL OF MATHEMATICS, 2023, 5 (01) : 31 - 71
  • [30] HOMOLOGICAL MIRROR SYMMETRY FOR PUNCTURED SPHERES
    Abouzaid, Mohammed
    Auroux, Denis
    Efimov, Alexander I.
    Katzarkov, Ludmil
    Orlov, Dmitri
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 26 (04) : 1051 - 1083