A complete monotonicity property of the gamma function

被引:144
作者
Qi, F [1 ]
Chen, CP [1 ]
机构
[1] Jiaozuo Inst Technol, Dept Appl Math & Informat, Henan 454000, Peoples R China
基金
美国国家科学基金会;
关键词
gamma function; psi function; logarithmically completely monotonic function;
D O I
10.1016/j.jmaa.2004.04.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A logarithmically completely monotonic function is completely monotonic. The function 1 - lnx +1/x ln Gamma(x + 1) is strictly completely monotonic on (0, infinity). The function (x)rootGamma(x+1)/x is strictly logarithmically completely monotonic on (0, infinity). (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:603 / 607
页数:5
相关论文
共 50 条
[31]   MONOTONICITY THEOREMS AND INEQUALITIES FOR THE GAMMA FUNCTION [J].
Kupan, Pal A. ;
Szasz, Robert .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2014, 17 (01) :149-159
[32]   A monotoneity property of the gamma function [J].
Anderson, GD ;
Qiu, SL .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (11) :3355-3362
[33]   Complete monotonicity of a function involving the divided difference of digamma functions [J].
Qi Feng ;
Luo QiuMing ;
Guo BaiNi .
SCIENCE CHINA-MATHEMATICS, 2013, 56 (11) :2315-2325
[34]   Complete monotonicity of a function involving the divided diference of digamma functions [J].
QI Feng ;
LUO QiuMing ;
GUO BaiNi .
Science China(Mathematics), 2013, 56 (11) :2315-2325
[35]   Complete monotonicity of a function involving the divided difference of digamma functions [J].
Feng Qi ;
QiuMing Luo ;
BaiNi Guo .
Science China Mathematics, 2013, 56 :2315-2325
[36]   Complete monotonicity for a ratio of finitely many gamma functions [J].
Chen, Hai-Sheng ;
Zhu, Ye-Cheng ;
Wang, Jia-Hui .
MATHEMATICA SLOVACA, 2024, 74 (02) :355-364
[37]   Ramanujan’s estimate for the gamma function via monotonicity arguments [J].
Cristinel Mortici .
The Ramanujan Journal, 2011, 25 :149-154
[38]   SOME MONOTONICITY PROPERTIES AND INEQUALITIES FOR THE (p,k)-GAMMA FUNCTION [J].
Nantomah, Kwara ;
Merovci, Faton ;
Nasiru, Suleman .
KRAGUJEVAC JOURNAL OF MATHEMATICS, 2018, 42 (02) :287-297
[39]   Ramanujan's estimate for the gamma function via monotonicity arguments [J].
Mortici, Cristinel .
RAMANUJAN JOURNAL, 2011, 25 (02) :149-154
[40]   Complete Monotonicity for a New Ratio of Finitely Many Gamma Functions [J].
Qi, Feng .
ACTA MATHEMATICA SCIENTIA, 2022, 42 (02) :511-520