A complete monotonicity property of the gamma function

被引:144
作者
Qi, F [1 ]
Chen, CP [1 ]
机构
[1] Jiaozuo Inst Technol, Dept Appl Math & Informat, Henan 454000, Peoples R China
基金
美国国家科学基金会;
关键词
gamma function; psi function; logarithmically completely monotonic function;
D O I
10.1016/j.jmaa.2004.04.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A logarithmically completely monotonic function is completely monotonic. The function 1 - lnx +1/x ln Gamma(x + 1) is strictly completely monotonic on (0, infinity). The function (x)rootGamma(x+1)/x is strictly logarithmically completely monotonic on (0, infinity). (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:603 / 607
页数:5
相关论文
共 50 条
[21]   Integral representations and complete monotonicity of remainders of the Binet and Stirling formulas for the gamma function [J].
Qi, Feng ;
Guo, Bai-Ni .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2017, 111 (02) :425-434
[22]   Monotonicity and inequalities involving the incomplete gamma function [J].
Yang, Zhen-Hang ;
Zhang, Wen ;
Chu, Yu-Ming .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
[23]   MONOTONICITY AND SHARP INEQUALITIES RELATED TO GAMMA FUNCTION [J].
Yang, Zhen-Hang ;
Tian, Jingfeng .
JOURNAL OF MATHEMATICAL INEQUALITIES, 2018, 12 (01) :1-22
[24]   Logarithmically Complete Monotonicity of Certain Ratios Involving the k-Gamma Function [J].
Nantomah, Kwara ;
Yin, Li .
COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2018, 9 (04) :559-565
[25]   Integral representations and complete monotonicity of remainders of the Binet and Stirling formulas for the gamma function [J].
Feng Qi ;
Bai-Ni Guo .
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2017, 111 :425-434
[26]   Monotonicity and inequalities involving the incomplete gamma function [J].
Zhen-Hang Yang ;
Wen Zhang ;
Yu-Ming Chu .
Journal of Inequalities and Applications, 2016
[27]   Monotonicity and inequalities for the gamma function [J].
Zhen-Hang Yang ;
Jing-Feng Tian .
Journal of Inequalities and Applications, 2017
[28]   Monotonicity and inequalities for the gamma function [J].
Yang, Zhen-Hang ;
Tian, Jing-Feng .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
[29]   MONOTONICITY PROPERTIES RELATED TO SOME GAMMA FUNCTION ESTIMATES [J].
Mortici, Cristinel ;
Dumitrescu, Sorinel ;
Hu, Yue .
UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2016, 78 (01) :195-204
[30]   Inequalities and monotonicity properties for the gamma function [J].
Giordano, C ;
Laforgia, A .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 133 (1-2) :387-396