Weak Galerkin finite element methods for a fourth order parabolic equation

被引:16
作者
Chai, Shimin [1 ]
Zou, Yongkui [1 ]
Zhou, Chenguang [1 ]
Zhao, Wenju [2 ]
机构
[1] Jilin Univ, Sch Math, Jilin, Jilin, Peoples R China
[2] Southern Univ Sci & Technol, Dept Math, Shenzhen, Peoples R China
基金
中国国家自然科学基金;
关键词
a priori error estimate; fourth order parabolic equation; weak Galerkin finite element method; DISCONTINUOUS GALERKIN; APPROXIMATIONS;
D O I
10.1002/num.22373
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to a newly developed weak Galerkin finite element method with the stabilization term for a linear fourth order parabolic equation, where weakly defined Laplacian operator over discontinuous functions is introduced. Priori estimates are developed and analyzed in L-2 and an H-2 type norm for both semi-discrete and fully discrete schemes. And finally, numerical examples are provided to confirm the theoretical results.
引用
收藏
页码:1745 / 1755
页数:11
相关论文
共 23 条
[11]   ADAPTIVE DISCONTINUOUS GALERKIN APPROXIMATIONS TO FOURTH ORDER PARABOLIC PROBLEMS [J].
Georgoulis, Emmanuil H. ;
Virtanen, Juha M. .
MATHEMATICS OF COMPUTATION, 2015, 84 (295) :2163-2190
[12]  
[何斯日古楞 He Siriguleng], 2009, [计算数学, Mathematica Numerica Sinica], V31, P167
[13]  
Hou C., 2015, J INEQUAL APPL, V240, P2015
[14]   FULLY-DISCRETE FINITE ELEMENT APPROXIMATIONS FOR A FOURTH-ORDER LINEAR STOCHASTIC PARABOLIC EQUATION WITH ADDITIVE SPACE-TIME WHITE NOISE [J].
Kossioris, Georgios T. ;
Zouraris, Georgios E. .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2010, 44 (02) :289-322
[15]   Finite-element approximation of the linearized Cahn-Hilliard-Cook equation [J].
Larsson, Stig ;
Mesforush, Ali .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2011, 31 (04) :1315-1333
[16]   Optimal convergence analysis of mixed finite element methods for fourth-order elliptic and parabolic problems [J].
Li, Jichun .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2006, 22 (04) :884-896
[17]   Weak Galerkin Finite Element Methods for the Biharmonic Equation on Polytopal Meshes [J].
Mu, Lin ;
Wang, Junping ;
Ye, Xiu .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2014, 30 (03) :1003-1029
[18]  
Mu L, 2014, J SCI COMPUT, V59, P473, DOI 10.1007/s10915-013-9770-4
[19]  
Wang CM, 2015, INT J NUMER ANAL MOD, V12, P302
[20]   A WEAK GALERKIN FINITE ELEMENT SCHEME FOR THE CAHN-HILLIARD EQUATION [J].
Wang, Junping ;
Zhai, Qilong ;
Zhang, Ran ;
Zhang, Shangyou .
MATHEMATICS OF COMPUTATION, 2019, 88 (315) :211-235