Weak Galerkin finite element methods for a fourth order parabolic equation

被引:16
作者
Chai, Shimin [1 ]
Zou, Yongkui [1 ]
Zhou, Chenguang [1 ]
Zhao, Wenju [2 ]
机构
[1] Jilin Univ, Sch Math, Jilin, Jilin, Peoples R China
[2] Southern Univ Sci & Technol, Dept Math, Shenzhen, Peoples R China
基金
中国国家自然科学基金;
关键词
a priori error estimate; fourth order parabolic equation; weak Galerkin finite element method; DISCONTINUOUS GALERKIN; APPROXIMATIONS;
D O I
10.1002/num.22373
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to a newly developed weak Galerkin finite element method with the stabilization term for a linear fourth order parabolic equation, where weakly defined Laplacian operator over discontinuous functions is introduced. Priori estimates are developed and analyzed in L-2 and an H-2 type norm for both semi-discrete and fully discrete schemes. And finally, numerical examples are provided to confirm the theoretical results.
引用
收藏
页码:1745 / 1755
页数:11
相关论文
共 23 条
[1]   High-order polygonal discontinuous Petrov-Galerkin (PolyDPG) methods using ultraweak formulations [J].
Astaneh, Ali Vaziri ;
Fuentes, Federico ;
Mora, Jaime ;
Demkowicz, Leszek .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 332 :686-711
[2]   Finite element approximation of a model for phase separation of a multi-component alloy with non-smooth free energy [J].
Barrett, JW ;
Blowey, JF .
NUMERISCHE MATHEMATIK, 1997, 77 (01) :1-34
[3]   A family of mimetic finite difference methods on polygonal and polyhedral meshes [J].
Brezzi, F ;
Lipnikov, K ;
Simoncini, V .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2005, 15 (10) :1533-1551
[4]   A posteriori error estimates for the virtual element method [J].
Cangiani, Andrea ;
Georgoulis, Emmanuil H. ;
Pryer, Tristan ;
Sutton, Oliver J. .
NUMERISCHE MATHEMATIK, 2017, 137 (04) :857-893
[5]   Conforming and nonconforming virtual element methods for elliptic problems [J].
Cangiani, Andrea ;
Manzini, Gianmarco ;
Sutton, Oliver J. .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2017, 37 (03) :1317-1354
[6]   Conforming finite element methods for the stochastic Cahn-Hilliard-Cook equation [J].
Chai, Shimin ;
Cao, Yanzhao ;
Zou, Yongkui ;
Zhao, Wenju .
APPLIED NUMERICAL MATHEMATICS, 2018, 124 :44-56
[7]   A C0-weak Galerkin finite element method for fourth-order elliptic problems [J].
Chen, Gang ;
Feng, Minfu .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2016, 32 (03) :1090-1104
[8]   BRIDGING THE HYBRID HIGH-ORDER AND HYBRIDIZABLE DISCONTINUOUS GALERKIN METHODS [J].
Cockburn, Bernardo ;
Di Pietro, Daniele A. ;
Ern, Alexandre .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2016, 50 (03) :635-650
[9]   UNIFIED HYBRIDIZATION OF DISCONTINUOUS GALERKIN, MIXED, AND CONTINUOUS GALERKIN METHODS FOR SECOND ORDER ELLIPTIC PROBLEMS [J].
Cockburn, Bernardo ;
Gopalakrishnan, Jayadeep ;
Lazarov, Raytcho .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (02) :1319-1365
[10]   Recovered finite element methods [J].
Georgoulis, Emmanuil H. ;
Pryer, Tristan .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 332 :303-324