Gas-Transport Properties of Polyimides with Various Side Groups

被引:2
作者
Fateev, N. N. [1 ]
Solomakhin, V. I. [1 ]
Baiminov, B. A. [2 ]
Chuchalov, A. V. [2 ,3 ]
Sapozhnikov, D. A. [2 ]
Vygodskii, Ya. S. [2 ]
机构
[1] OOO TECON Membrane Technol, Moscow 123298, Russia
[2] Russian Acad Sci, Nesmeyanov Inst Organoelement Cpds, Moscow 119991, Russia
[3] Mendeleev Univ Chem Technol, Moscow 125047, Russia
关键词
MEMBRANES; DIANHYDRIDE; PERFORMANCE; POLYMERS;
D O I
10.1134/S1811238220020058
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Using one-step high-temperature polycyclocondensation organosoluble homo- and copolyimides containing various side groups, such as CF3-, COOH-, Cl-, and fluorene, and their certain combinations, are synthesized, and their effect on O-2, N-2, CO2, He, and CH4 permeability coefficients of films is studied. The synthesized polymers with a inherent viscosity of 0.41-0.76 dL/g are characterized by a high heat resistance (230 degrees C <= T-g <= 380 degrees C) and form strong films (60 MPa <= sigma <= 140 MPa; 0.9 GPa <= E <= 1.6 GPa). It is shown that depending on the nature of side groups the polyimides under consideration demonstrate different gas-transport behavior. For example, for one of the polymers the selectivity factor for He/CH4 separation is 315 (a He permeability coefficient of 9.5 Barrer), while for another polymer the selectivity factor for CO2/CH4 separation is 34 (at a CO2 permeability coefficient of 37.3 Barrer). For crosslinked polyimide films the selectivity factor for He/CH4 separation attains 125 (at a He permeability coefficient of 19.7 Barrer) and the selectivity factor for CO2/CH4 separation is 43 (at a CO2 permeability coefficient of 7.0 Barrer).
引用
收藏
页码:266 / 272
页数:7
相关论文
共 32 条
  • [1] Chemical Crosslinking of 6FDA-ODA and 6FDA-ODA:DABA for Improved CO2/CH4 Separation
    Ahmad, Mohd Zamidi
    Pelletier, Henri
    Martin-Gil, Violeta
    Castro-Munoz, Roberto
    Fila, Vlastimil
    [J]. MEMBRANES, 2018, 8 (03)
  • [2] Future directions of membrane gas separation technology
    Baker, RW
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2002, 41 (06) : 1393 - 1411
  • [3] 30 Years of Membrane Technology for Gas Separation
    Bernardo, Paola
    Clarizia, Gabriele
    [J]. ICHEAP-11: 11TH INTERNATIONAL CONFERENCE ON CHEMICAL AND PROCESS ENGINEERING, PTS 1-4, 2013, 32 : 1999 - 2004
  • [4] SYNTHESIS AND CHARACTERIZATION OF A NOVEL 3F-BASED FLUORINATED MONOMER FOR FLUORINE-CONTAINING POLYIMIDES
    BRINK, MH
    BRANDOM, DK
    WILKES, GL
    MCGRATH, JE
    [J]. POLYMER, 1994, 35 (23) : 5018 - 5023
  • [5] Some approaches for high performance polymer based membranes for gas separation: block copolymers, carbon molecular sieves and mixed matrix membranes
    Buonomenna, M. G.
    Yave, W.
    Golemme, G.
    [J]. RSC ADVANCES, 2012, 2 (29): : 10745 - 10773
  • [6] PLASTICIZATION OF GLASSY-POLYMERS BY CO2
    CHIOU, JS
    BARLOW, JW
    PAUL, DR
    [J]. JOURNAL OF APPLIED POLYMER SCIENCE, 1985, 30 (06) : 2633 - 2642
  • [7] Preparation of porous thin films of a partially aliphatic polyimide
    Chung, Chan-Moon
    Lee, Ju-Ho
    Cho, Sung-Youl
    Kim, Joong-Gon
    Moon, Sung-Yun
    [J]. JOURNAL OF APPLIED POLYMER SCIENCE, 2006, 101 (01) : 532 - 538
  • [8] Isomeric polyimides
    Ding, Mengxian
    [J]. PROGRESS IN POLYMER SCIENCE, 2007, 32 (06) : 623 - 668
  • [9] Hajipour A., 2011, POLYIMIDES SYNTHESIS
  • [10] Hsiao SH, 1997, J POLYM SCI POL CHEM, V35, P2801, DOI 10.1002/(SICI)1099-0518(19970930)35:13<2801::AID-POLA26>3.0.CO