Heterojunction engineering of graphitic carbon nitride (g-C3N4) via Pt loading with improved daylight-induced photocatalytic reduction of carbon dioxide to methane

被引:322
作者
Ong, Wee-Jun [1 ]
Tan, Lling-Lling [1 ]
Chai, Siang-Piao [1 ]
Yong, Siek-Ting [1 ]
机构
[1] Monash Univ, Sch Engn, Chem Engn Discipline, Multidisciplinary Platform Adv Engn, Bandar Sunway 47500, Selangor, Malaysia
关键词
HIGH-YIELD SYNTHESIS; HYBRID NANOCOMPOSITES; HYDROGEN-PRODUCTION; CO2; REDUCTION; DOPED TIO2; 001; FACETS; GRAPHENE; CONVERSION; NANOSHEETS; WATER;
D O I
10.1039/c4dt02940b
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
In this paper, noble-metal Pt nanoparticles of around 2.5 nm were deposited on graphitic carbon nitride (g-C3N4) synthesized by a chemical reduction process in ethylene glycol. Compared with pure g-C3N4, the resulting Pt-loaded g-C3N4 (Pt/CN) exhibited a considerable improvement in the photoreduction of CO2 to CH4 in the presence of water vapor at ambient temperature and atmospheric pressure under visible light irradiation. 2 wt% Pt-loaded g-C3N4 (2Pt/CN) nanocomposites produced the highest CH4 yield of 13.02 mu mol g(catalyst)(-1) after 10 h of light irradiation, which was a 5.1-fold enhancement in comparison with pure g-C3N4 (2.55 mu mol g(catalyst)(-1)). The remarkable photocatalytic activity of Pt/CN nano-structures in the CH4 production was ascribed to the enhanced visible light absorption and efficient interfacial transfer of photogenerated electrons from g-C3N4 to Pt due to the lower Fermi level of Pt in the Pt/CN hybrid heterojunctions as evidenced by the UV-Vis and photoluminescence studies. The enriched electron density on Pt favored the reduction of CO2 to CH4 via a multi-electron transfer process. This resulted in the inhibition of electron-hole pair recombination for effective spatial charge separation, thus enhancing the photocatalytic reactions. Based on the experimental results obtained, a plausible mechanism for improved photocatalytic performance associated with Pt/CN was proposed.
引用
收藏
页码:1249 / 1257
页数:9
相关论文
共 53 条
[1]   Two-dimensional g-C3N4: an ideal platform for examining facet selectivity of metal co-catalysts in photocatalysis [J].
Bai, Song ;
Wang, Xijun ;
Hu, Canyu ;
Xie, Maolin ;
Jiang, Jun ;
Xiong, Yujie .
CHEMICAL COMMUNICATIONS, 2014, 50 (46) :6094-6097
[2]   Enhancement of visible photocatalytic activity via Ag@C3N4 core-shell plasmonic composite [J].
Bai, Xiaojuan ;
Zong, Ruilong ;
Li, Cuixia ;
Liu, Di ;
Liu, Yanfang ;
Zhu, Yongfa .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2014, 147 :82-91
[3]   Solar-to-fuels conversion over In2O3/g-C3N4 hybrid photocatalysts [J].
Cao, Shao-Wen ;
Liu, Xin-Feng ;
Yuan, Yu-Peng ;
Zhang, Zhen-Yi ;
Liao, Yu-Sen ;
Fang, Jun ;
Loo, Say Chye Joachim ;
Sum, Tze Chien ;
Xue, Can .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2014, 147 :940-946
[4]   Photodegradation of bisphenol A by highly stable palladium-doped mesoporous graphite carbon nitride (Pd/mpg-C3N4) under simulated solar light irradiation [J].
Chang, Chun ;
Fu, Yu ;
Hu, Meng ;
Wang, Chunying ;
Shan, Guoqiang ;
Zhu, Lingyan .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2013, 142 :553-560
[5]   Molecular and textural engineering of conjugated carbon nitride catalysts for selective oxidation of alcohols with visible light [J].
Chen, Yan ;
Zhang, Jinshui ;
Zhang, Mingwen ;
Wang, Xinchen .
CHEMICAL SCIENCE, 2013, 4 (08) :3244-3248
[6]   In Situ Template-Free Ion-Exchange Process to Prepare Visible-Light-Active g-C3N4/NiS Hybrid Photocatalysts with Enhanced Hydrogen Evolution Activity [J].
Chen, Zhihong ;
Sun, Peng ;
Fan, Bing ;
Zhang, Zhengguo ;
Fang, Xiaoming .
JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (15) :7801-7807
[7]   Au-Nanoparticle-Loaded Graphitic Carbon Nitride Nanosheets: Green Photocatalytic Synthesis and Application toward the Degradation of Organic Pollutants [J].
Cheng, Ningyan ;
Tian, Jingqi ;
Liu, Qian ;
Ge, Chenjiao ;
Qusti, Abdullab H. ;
Asiri, Abdullah M. ;
Al-Youbi, Abdulrahman O. ;
Sun, Xuping .
ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (15) :6815-6819
[8]   Hybrid Graphene and Graphitic Carbon Nitride Nanocomposite: Gap Opening, Electron-Hole Puddle, Interfacial Charge Transfer, and Enhanced Visible Light Response [J].
Du, Aijun ;
Sanvito, Stefano ;
Li, Zhen ;
Wang, Dawei ;
Jiao, Yan ;
Liao, Ting ;
Sun, Qiao ;
Ng, Yun Hau ;
Zhu, Zhonghua ;
Amal, Rose ;
Smith, Sean C. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (09) :4393-4397
[9]   Synthesis and Efficient Visible Light Photocatalytic Hydrogen Evolution of Polymeric g-C3N4 Coupled with CdS Quantum Dots [J].
Ge, Lei ;
Zuo, Fan ;
Liu, Jikai ;
Ma, Quan ;
Wang, Chen ;
Sun, Dezheng ;
Bartels, Ludwig ;
Feng, Pingyun .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (25) :13708-13714
[10]   Ternary Pt/SnOx/TiO2 photocatalysts for hydrogen production: consequence of Pt sites for synergy of dual co-catalysts [J].
Gu, Quan ;
Long, Jinlin ;
Zhuang, Huaqiang ;
Zhang, Chaoqiang ;
Zhou, Yangen ;
Wang, Xuxu .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (24) :12521-12534