Infinite hierarchy of nonlinear Schrodinger equations and their solutions

被引:150
作者
Ankiewicz, A. [1 ]
Kedziora, D. J. [1 ]
Chowdury, A. [1 ]
Bandelow, U. [2 ]
Akhmediev, N. [1 ]
机构
[1] Australian Natl Univ, Res Sch Phys & Engn, Opt Sci Grp, Canberra, ACT 0200, Australia
[2] Weierstrass Inst Appl Anal & Stochast, D-10117 Berlin, Germany
基金
澳大利亚研究理事会;
关键词
HEISENBERG SPIN CHAIN; SOLITON-SOLUTIONS; INTEGRABILITY; EVOLUTION; FIBERS; WAVES;
D O I
10.1103/PhysRevE.93.012206
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the infinite integrable nonlinear Schrodinger equation hierarchy beyond the Lakshmanan-Porsezian-Daniel equation which is a particular (fourth-order) case of the hierarchy. In particular, we present the generalized Lax pair and generalized soliton solutions, plane wave solutions, Akhmediev breathers, Kuznetsov-Ma breathers, periodic solutions, and rogue wave solutions for this infinite-order hierarchy. We find that "even-order" equations in the set affect phase and "stretching factors" in the solutions, while "odd-order" equations affect the velocities. Hence odd-order equation solutions can be real functions, while even-order equation solutions are always complex.
引用
收藏
页数:10
相关论文
共 24 条
[1]  
Abramowitz M., 1972, Handbook of mathematical functions with formulas, graphs, and mathematical tables, 9th printing, P555
[2]  
Agrawal G. P., 2006, OPTICS PHOTONICS SER
[3]  
Akhmediev N., 1997, Solitons: Nonlinear Pulses and Beams
[4]   Simplified description of soliton perturbation and interaction using averaged complex potentials [J].
Ankiewicz, A .
JOURNAL OF NONLINEAR OPTICAL PHYSICS & MATERIALS, 1995, 4 (04) :857-870
[5]   Extended nonlinear Schrodinger equation with higher-order odd and even terms and its rogue wave solutions [J].
Ankiewicz, Adrian ;
Wang, Yan ;
Wabnitz, Stefan ;
Akhmediev, Nail .
PHYSICAL REVIEW E, 2014, 89 (01)
[6]   Higher-order integrable evolution equation and its soliton solutions [J].
Ankiewicz, Adrian ;
Akhmediev, Nail .
PHYSICS LETTERS A, 2014, 378 (04) :358-361
[7]   Rogue wave triplets [J].
Ankiewicz, Adrian ;
Kedziora, David J. ;
Akhmediev, Nail .
PHYSICS LETTERS A, 2011, 375 (28-29) :2782-2785
[8]   Rogue waves and rational solutions of the Hirota equation [J].
Ankiewicz, Adrian ;
Soto-Crespo, J. M. ;
Akhmediev, Nail .
PHYSICAL REVIEW E, 2010, 81 (04)
[9]   Wave collapse in physics: principles and applications to light and plasma waves [J].
Berge, L .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1998, 303 (5-6) :259-370
[10]   TRANSMISSION OF STATIONARY NONLINEAR OPTICAL PULSES IN DISPERSIVE DIELECTRIC FIBERS .1. ANOMALOUS DISPERSION [J].
HASEGAWA, A ;
TAPPERT, F .
APPLIED PHYSICS LETTERS, 1973, 23 (03) :142-144