Sums of two polynomials with each having real zeros symmetric with the other
被引:6
作者:
Kim, SH
论文数: 0引用数: 0
h-index: 0
机构:
Seoul Natl Univ, Sch Math Sci, Seoul 151742, South KoreaSeoul Natl Univ, Sch Math Sci, Seoul 151742, South Korea
Kim, SH
[1
]
机构:
[1] Seoul Natl Univ, Sch Math Sci, Seoul 151742, South Korea
来源:
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES
|
2002年
/
112卷
/
02期
关键词:
consider the polynomial equation;
D O I:
10.1007/BF02829753
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Consider the polynomial equation [GRAPHICS] where 0 < r(1) ≤ r(2) ≤ ... ≤ r(n) All zeros of this equation lie on the imaginary axis. In this paper, we show that no two of the zeros can be equal and the gaps between the zeros in the upper half-plane strictly increase as one proceeds upward. Also we give some examples of geometric progressions of the zeros in the upper half-plane in cases n=6, 8, 10.