Enhanced ethanol sensing properties of TiO2/ZnO core-shell nanorod sensors

被引:35
作者
Park, Sunghoon [1 ]
An, Soyeon [1 ]
Ko, Hyunsung [1 ]
Lee, Sangmin [2 ]
Kim, Hyoun Woo [3 ]
Lee, Chongmu [1 ]
机构
[1] Inha Univ, Dept Mat Sci & Engn, Inchon 402751, South Korea
[2] Inha Univ, Dept Elect Engn, Inchon 402751, South Korea
[3] Hanyang Univ, Div Engn & Mat Sci, Seoul 133791, South Korea
来源
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING | 2014年 / 115卷 / 04期
基金
新加坡国家研究基金会;
关键词
GAS; NANOWIRES; NANOBELTS; OXIDE; FABRICATION; NANOTUBES; SNO2;
D O I
10.1007/s00339-013-7964-0
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
TiO2-core/ZnO-shell nanorods were synthesized using a two-step process: the synthesis of TiO2 nanorods using a hydrothermal method followed by atomic layer deposition of ZnO. The mean diameter and length of the nanorods were similar to 300 nm and similar to 2.3 mu m, respectively. The cores and shells of the nanorods were monoclinic-structured single-crystal TiO2 and wurtzite-structured single-crystal ZnO, respectively. The multiple networked TiO2-core/ZnO-shell nanorod sensors showed responses of 132-1054 % at ethanol (C2H5OH) concentrations ranging from 5 to 25 ppm at 150 C-a similar to. These responses were 1-5 times higher than those of the pristine TiO2 nanorod sensors at the same C2H5OH concentration range. The substantial improvement in the response of the pristine TiO2 nanorods to C2H5OH gas by their encapsulation with ZnO may be attributed to the enhanced absorption and dehydrogenation of ethanol. In addition, the enhanced sensor response of the core-shell nanorods can be attributed partly to changes in resistance due to both the surface depletion layer of each core-shell nanorod and the potential barriers built in the junctions caused by a combination of homointerfaces and heterointerfaces.
引用
收藏
页码:1223 / 1229
页数:7
相关论文
共 36 条
[1]  
[Anonymous], 2004, ANGEW CHEM, DOI DOI 10.1002/ange.200353238
[2]   Synthesis and ethanol sensing characteristics of single crystalline SnO2 nanorods -: art. no. 233503 [J].
Chen, YJ ;
Xue, XY ;
Wang, YG ;
Wang, TH .
APPLIED PHYSICS LETTERS, 2005, 87 (23) :1-3
[3]   Ethanol gas sensor based on CoFe2O4 nano-crystallines prepared by hydrothermal method [J].
Chu Xiangfeng ;
Jiang Dongli ;
Yu, Guo ;
Zheng Chenmou .
SENSORS AND ACTUATORS B-CHEMICAL, 2006, 120 (01) :177-181
[4]   TiO2 nanowires array fabrication and gas sensing properties [J].
Francioso, L. ;
Taurino, A. M. ;
Forleo, A. ;
Siciliano, P. .
SENSORS AND ACTUATORS B-CHEMICAL, 2008, 130 (01) :70-76
[5]   Synthesis, Raman scattering and defects of β-Ga2O3 nanorods [J].
Gao, YH ;
Bando, Y ;
Sato, T ;
Zhang, YF ;
Gao, XQ .
APPLIED PHYSICS LETTERS, 2002, 81 (12) :2267-2269
[6]   Humidity sensors based on ZnO/TiO2 core/shell nanorod arrays with enhanced sensitivity [J].
Gu, Lei ;
Zheng, Kaibo ;
Zhou, Ying ;
Li, Juan ;
Mo, Xiaoliang ;
Patzke, Greta R. ;
Chen, Guorong .
SENSORS AND ACTUATORS B-CHEMICAL, 2011, 159 (01) :1-7
[7]   Nanowires, nanobelts and related nanostructures of Ga2O3 [J].
Gundiah, G ;
Govindaraj, A ;
Rao, CNR .
CHEMICAL PHYSICS LETTERS, 2002, 351 (3-4) :189-194
[8]   Interplay between O2 and SnO2:: Oxygen ionosorption and spectroscopic evidence for adsorbed oxygen [J].
Gurlo, Alexander .
CHEMPHYSCHEM, 2006, 7 (10) :2041-2052
[9]   Nanostructured SnO2-ZnO sensors: Highly sensitive and selective to ethanol [J].
Hemmati, Sahar ;
Firooz, Azam Anaraki ;
Khodadadi, Abbas Ali ;
Mortazavi, Yadollah .
SENSORS AND ACTUATORS B-CHEMICAL, 2011, 160 (01) :1298-1303
[10]   Laterally grown ZnO nanowire ethanol gas sensors [J].
Hsueh, Ting-Jen ;
Hsu, Cheng-Liang ;
Chang, Shoou-Jinn ;
Chen, I-Cherng .
SENSORS AND ACTUATORS B-CHEMICAL, 2007, 126 (02) :473-477