Boundedness of the Weak Solutions to Quasilinear Elliptic Equations with Morrey Data

被引:9
作者
Byun, Sun-Sig [1 ,2 ]
Palagachev, Dian K. [3 ]
机构
[1] Seoul Natl Univ, Dept Math, Seoul 151747, South Korea
[2] Seoul Natl Univ, Res Inst Math, Seoul 151747, South Korea
[3] Politecn Bari, Dipartimento Meccan Matemat & Management, I-70125 Bari, Italy
基金
新加坡国家研究基金会;
关键词
Quasilinear elliptic operator; discontinuous coefficients; Morrey space; essential boundedness; Holder continuity; P-SOBOLEV SPACES; PARABOLIC EQUATIONS; LOCAL BEHAVIOR; COEFFICIENTS; CONTINUITY; OPERATORS;
D O I
10.1512/iumj.2013.62.5115
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove global essential boundedness of weak solutions to quasilinear coercive divergence form equations with data belonging to Morrey spaces. The nonlinear terms are given by Caratheodory functions and satisfy controlled growth assumptions. As an application of the main result, we get global Holder continuity of the solutions to semilinear elliptic equations with measurable coefficients and Morrey data.
引用
收藏
页码:1565 / 1585
页数:21
相关论文
共 30 条
[1]  
[Anonymous], 1971, Ann. Scuola Norm. Sup. Pisa Cl. Sci.
[2]   Weighted Lp-estimates for Elliptic Equations with Measurable Coefficients in Nonsmooth Domains [J].
Byun, Sun-Sig ;
Palagachev, Dian K. .
POTENTIAL ANALYSIS, 2014, 41 (01) :51-79
[3]  
De Giorgi E., 1957, Mem. Acad. Sci. Torino. Cl. Sci. Fis. Mat. Nat., V3, P25
[4]   Global Regularity of Weak Solutions to Quasilinear Elliptic and Parabolic Equations with Controlled Growth [J].
Dong, Hongjie ;
Kim, Doyoon .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2011, 36 (10) :1750-1777
[5]  
Giaquinta M., 1983, ANN MATH STUD, V105
[6]   ON SOME NON-LINEAR ELLIPTIC DIFFERENTIAL-FUNCTIONAL EQUATIONS [J].
HARTMAN, P ;
STAMPACCHIA, G .
ACTA MATHEMATICA UPPSALA, 1966, 115 (3-4) :271-+
[7]  
Ladyzenskaja O.A., 1961, Uspehi Mat. Nauk, V16, P19
[8]  
LADYZHENSKAYA OLGA A., 1973, LINEAR QUASILINEAR E
[9]   ON SMOOTHNESS OF SUPERHARMONICS WHICH SOLVE A MINIMUM PROBLEM [J].
LEWY, H ;
STAMPACC.G .
JOURNAL D ANALYSE MATHEMATIQUE, 1970, 23 :227-&
[10]  
LIEBERMAN GARY M., 1993, PARTIAL DIFFERENTIAL, V18, P1191