Effective force coarse-graining

被引:111
作者
Wang, Yanting
Noid, W. G.
Liu, Pu
Voth, Gregory A. [1 ]
机构
[1] Univ Utah, Ctr Biophys Modeling & Simulat, Salt Lake City, UT 84112 USA
基金
美国国家卫生研究院;
关键词
MOLECULAR-DYNAMICS SIMULATION; IONIC LIQUIDS; SYSTEMS; FIELD; SOLVENTS; MODELS;
D O I
10.1039/b819182d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An effective force coarse-graining (EF-CG) method is presented in this paper that complements the more general multiscale coarse-graining (MS-CG) methodology. The EF-CG method determines effective pairwise forces between coarse-grained sites by averaging over the atomistic forces between the corresponding atomic groups in configurations sampled from equilibrium all-atom molecular dynamics simulations. The EF-CG method extracts the transferable part of the MS-CG force field at the cost of reduced accuracy in reproducing certain structural properties. Therefore, the EF-CG method provides an alternative to the MS-CG approach for determining CG force fields that give improved transferability but reduced structural accuracy. The EF-CG method is especially suitable for coarse-graining large molecules with high symmetry, such as bulky organic molecules, and for studying complex phenomena across a range of thermodynamic conditions. The connection between the EF-CG and MS-CG approaches as well as the limitations of the EF-CG method are also discussed. Numerical results for neopentane, methanol and ionic liquid systems illustrate the utility of the method.
引用
收藏
页码:2002 / 2015
页数:14
相关论文
共 50 条
[21]   Systematic coarse-graining methods for soft matter simulations - a review [J].
Brini, Emiliano ;
Algaer, Elena A. ;
Ganguly, Pritam ;
Li, Chunli ;
Rodriguez-Ropero, Francisco ;
van der Vegt, Nico F. A. .
SOFT MATTER, 2013, 9 (07) :2108-2119
[22]   Systematic bottom-up molecular coarse-graining via force and torque matching using anisotropic particles [J].
Nguyen, Huong T. L. ;
Huang, David M. .
JOURNAL OF CHEMICAL PHYSICS, 2022, 156 (18)
[23]   Adversarial-residual-coarse-graining: Applying machine learning theory to systematic molecular coarse-graining [J].
Durumeric, Aleksander E. P. ;
Voth, Gregory A. .
JOURNAL OF CHEMICAL PHYSICS, 2019, 151 (12)
[24]   Exact dynamical coarse-graining without time-scale separation [J].
Lu, Jianfeng ;
Vanden-Eijnden, Eric .
JOURNAL OF CHEMICAL PHYSICS, 2014, 141 (04)
[25]   Coarse-Graining Organic Semiconductors: The Path to Multiscale Design [J].
Jackson, Nicholas E. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2021, 125 (02) :485-496
[26]   Thermodynamic consistency and other challenges in coarse-graining models [J].
Guenza, M. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2015, 224 (12) :2177-2191
[27]   Multiscale Coarse-Graining via Normal Mode Analysis [J].
Xia, Fei ;
Lu, Lanyuan .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2012, 8 (11) :4797-4806
[28]   Simultaneous Iterative Boltzmann Inversion for Coarse-Graining of Polyurea [J].
Agrawal, Vipin ;
Arya, Gaurav ;
Oswald, Jay .
MACROMOLECULES, 2014, 47 (10) :3378-3389
[29]   Coarse-graining RNA nanostructures for molecular dynamics simulations [J].
Paliy, Maxim ;
Melnik, Roderick ;
Shapiro, Bruce A. .
PHYSICAL BIOLOGY, 2010, 7 (03)
[30]   Perspective on coarse-graining, cognitive load, and materials simulation [J].
Jankowski, Eric ;
Ellyson, Neale ;
Fothergill, Jenny W. ;
Henry, Michael M. ;
Leibowitz, Mitchell H. ;
Miller, Evan D. ;
Alberts, Mone't ;
Chesser, Samantha ;
Guevara, Jaime D. ;
Jones, Chris D. ;
Klopfenstein, Mia ;
Noneman, Kendra K. ;
Singleton, Rachel ;
Uriarte-Mendoza, Ramon A. ;
Thomas, Stephen ;
Estridge, Carla E. ;
Jones, Matthew L. .
COMPUTATIONAL MATERIALS SCIENCE, 2020, 171