Shock-Waves and other Solutions to the Sharma-Tasso-Olver Equation with Lie Point Symmetry and Travelling-Waves Approach

被引:4
作者
Ahmed, B. S. [1 ]
Morris, R. M. [2 ]
Krishnan, E. V. [3 ]
Leach, P. G. L. [4 ]
Biswas, Anjan [2 ,5 ]
机构
[1] Ain Shams Univ, Coll Girls, Dept Math, Cairo, Egypt
[2] Delaware State Univ, Dept Math Sci, Dover, DE 19901 USA
[3] Sultan Qaboos Univ, Dept Math & Stat, Muscat, Oman
[4] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, ZA-4000 Durban, South Africa
[5] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 21589, Saudi Arabia
来源
APPLIED MATHEMATICS & INFORMATION SCIENCES | 2014年 / 8卷 / 06期
关键词
Sharmo-Tasso-Olver equation; travelling-wave; shock-wave; Lie point symmetry; SOLITONS;
D O I
10.12785/amis/080603
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper addresses the Sharma-Tasso-Olver equation from an integrability perspective. There are three integration tools that are applied to extract the solutions to this nonlinear evolution equation. The ansatz method is applied to the generalised equation with power-law nonlinearity to obtain shock-wave solutions. Subsequently, the traveling-wave hypothesis leads to another set of solutions in the complex domain. Finally, Lie symmetry analysis leads to a third set of solutions. Several constraint conditions emerge from the various analyses.
引用
收藏
页码:2675 / 2681
页数:7
相关论文
共 25 条
[1]  
Akbari M., 2013, INFORM SCI LETT, V2, P155, DOI [10.12785/isl/020304, DOI 10.12785/ISL/020304]
[2]  
[Anonymous], 1986, APPL LIE GROUPS DIFF
[3]  
Biswas A, 2013, Quant Phys Lett, V1, P79
[4]  
Bluman G W., 1989, APPL MATH SCI, V81, pXIII
[5]  
Diaz JI., 1985, Nonlinear Partial Differential Equations and Free Boundaries
[6]  
Dimas S, 2005, P 10 INT C MOD GROUP, P64
[7]  
Dutton Z, 2001, SCIENCE
[8]   Variational principles for some nonlinear partial differential equations with variable coefficients [J].
He, JH .
CHAOS SOLITONS & FRACTALS, 2004, 19 (04) :847-851
[9]  
Ibragimov N. H., 1985, TRANSFORMATION GROUP
[10]   Modified simple equation method for nonlinear evolution equations [J].
Jawad, Anwar Ja'afar Mohamad ;
Petkovic, Marko D. ;
Biswas, Anjan .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (02) :869-877