Rogue wave modes for a derivative nonlinear Schrodinger model

被引:95
作者
Chan, Hiu Ning [1 ]
Chow, Kwok Wing [1 ]
Kedziora, David Jacob [2 ]
Grimshaw, Roger Hamilton James [3 ]
Ding, Edwin [4 ]
机构
[1] Univ Hong Kong, Dept Mech Engn, Pokfulam, Hong Kong, Peoples R China
[2] Australian Natl Univ, Res Sch Phys & Engn, Canberra, ACT 0200, Australia
[3] Univ Loughborough, Dept Math Sci, Loughborough LE11 3TU, Leics, England
[4] Azusa Pacific Univ, Dept Math & Phys, Azusa, CA 91702 USA
基金
澳大利亚研究理事会;
关键词
MODULATION INSTABILITY; BREATHERS;
D O I
10.1103/PhysRevE.89.032914
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Rogue waves in fluid dynamics and optical waveguides are unexpectedly large displacements from a background state, and occur in the nonlinear Schrodinger equation with positive linear dispersion in the regime of positive cubic nonlinearity. Rogue waves of a derivative nonlinear Schrodinger equation are calculated in this work as a long-wave limit of a breather (a pulsating mode), and can occur in the regime of negative cubic nonlinearity if a sufficiently strong self-steepening nonlinearity is also present. This critical magnitude is shown to be precisely the threshold for the onset of modulation instabilities of the background plane wave, providing a strong piece of evidence regarding the connection between a rogue wave and modulation instability. The maximum amplitude of the rogue wave is three times that of the background plane wave, a result identical to that of the Peregrine breather in the classical nonlinear Schrodinger equation model. This amplification ratio and the resulting spectral broadening arising from modulation instability correlate with recent experimental results of water waves. Numerical simulations in the regime of marginal stability are described.
引用
收藏
页数:8
相关论文
共 30 条
  • [1] Rogue waves in optical fibers in presence of third-order dispersion, self-steepening, and self-frequency shift
    Ankiewicz, Adrian
    Soto-Crespo, Jose M.
    Chowdhury, M. Amdadul
    Akhmediev, Nail
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2013, 30 (01) : 87 - 94
  • [2] Matter rogue waves
    Bludov, Yu. V.
    Konotop, V. V.
    Akhmediev, N.
    [J]. PHYSICAL REVIEW A, 2009, 80 (03):
  • [3] Rogue waves in crossing seas: The Louis Majesty accident
    Cavaleri, L.
    Bertotti, L.
    Torrisi, L.
    Bitner-Gregersen, E.
    Serio, M.
    Onorato, M.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2012, 117
  • [4] Observation of a hierarchy of up to fifth-order rogue waves in a water tank
    Chabchoub, A.
    Hoffmann, N.
    Onorato, M.
    Slunyaev, A.
    Sergeeva, A.
    Pelinovsky, E.
    Akhmediev, N.
    [J]. PHYSICAL REVIEW E, 2012, 86 (05)
  • [5] Super Rogue Waves: Observation of a Higher-Order Breather in Water Waves
    Chabchoub, A.
    Hoffmann, N.
    Onorato, M.
    Akhmediev, N.
    [J]. PHYSICAL REVIEW X, 2012, 2 (01):
  • [6] INTEGRABILITY OF NON-LINEAR HAMILTONIAN-SYSTEMS BY INVERSE SCATTERING METHOD
    CHEN, HH
    LEE, YC
    LIU, CS
    [J]. PHYSICA SCRIPTA, 1979, 20 (3-4): : 490 - 492
  • [7] SOLITARY WAVES ON A CONTINUOUS-WAVE BACKGROUND
    CHOW, KW
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1995, 64 (05) : 1524 - 1528
  • [8] Long time interaction of envelope solitons and freak wave formations
    Clamond, Didier
    Francius, Marc
    Grue, John
    Kharif, Christian
    [J]. EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2006, 25 (05) : 536 - 553
  • [9] Modulation instability, Akhmediev Breathers and continuous wave supercontinuum generation
    Dudley, J. M.
    Genty, G.
    Dias, F.
    Kibler, B.
    Akhmediev, N.
    [J]. OPTICS EXPRESS, 2009, 17 (24): : 21497 - 21508
  • [10] Dysthe K, 2008, ANNU REV FLUID MECH, V40, P287, DOI [10.1146/annurev.fluid.40.111406.102203, 10.1146/annurev.fluid.40.111406.102]