Novel Cathode Material for Rechargeable Lithium-Sulfur Batteries

被引:7
作者
Gronwald, Oliver [1 ]
Garsuch, Arnd [1 ]
Panchenko, Alexander [1 ]
机构
[1] BASF SE, GMVP B1, D-67056 Ludwigshafen, Germany
关键词
Cathode; Depolymerization; Lithium-sulfur battery; Redox polymer; Tetrasulfide crosslink; Trithiocyanuric acid core; REDOX POLYMERIZATION ELECTRODES; ELEMENTAL SULFUR; HIGH-CAPACITY; COMPOSITE; PERFORMANCE; FILM;
D O I
10.2533/chimia.2013.719
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This article describes the synthesis and characterization of a novel crosslinked polymer with tricyanuric acid core bearing tetrasulfide bridges as a novel redox polymerization electrode material for rechargeable lithium-sulfur batteries. The new material was synthesized by reaction of stoichiometric sulfur monochloride amounts with trithiocyanuric acid and the structure of the redox polymer proven by the means of elementary analysis, infrared spectroscopy and Raman spectroscopy. Electrochemical evaluation of the polymer as electroactive cathode component showed cycling stability up to 140 cycles after initial capacity of 650 mAhg(-1) with 73% utilization of the theoretical specific capacity (893 mAhg(-1)) regarding the electroactive tetrasulfide moieties. Cell operation with excess amounts of electrolyte did not accelerate the cell degradation, indicating that the reduced sulfur species such as lower polysulfides (Li2S, Li2S2) and tris lithium salt of trithiocyanuric acid are efficiently immobilized on the cathode side.
引用
收藏
页码:719 / 723
页数:5
相关论文
共 35 条
[1]   Li/S fundamental chemistry and application to high-performance rechargeable batteries [J].
Akridge, JR ;
Mikhaylik, YV ;
White, N .
SOLID STATE IONICS, 2004, 175 (1-4) :243-245
[2]  
Becker H.G., 1998, ORGANIKUM ORGANISCH
[3]   Twin Polymerization at Spherical Hard Templates: An Approach to Size-Adjustable Carbon Hollow Spheres with Micro- or Mesoporous Shells [J].
Boettger-Hiller, Falko ;
Kempe, Patrick ;
Cox, Gerhard ;
Panchenko, Alexander ;
Janssen, Nicole ;
Petzold, Albrecht ;
Thurn-Albrecht, Thomas ;
Borchardt, Lars ;
Rose, Marcus ;
Kaskel, Stefan ;
Georgi, Colin ;
Lang, Heinrich ;
Spange, Stefan .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (23) :6088-6091
[4]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[5]  
Chung WJ, 2013, NAT CHEM, V5, P518, DOI [10.1038/nchem.1624, 10.1038/NCHEM.1624]
[6]   Structure-Related Electrochemistry of Sulfur-Poly(acrylonitrile) Composite Cathode Materials for Rechargeable Lithium Batteries [J].
Fanous, Jean ;
Wegner, Marcus ;
Grimminger, Jens ;
Andresen, Anne ;
Buchmeiser, Michael R. .
CHEMISTRY OF MATERIALS, 2011, 23 (22) :5024-5028
[7]   Sulfur-Impregnated Disordered Carbon Nanotubes Cathode for Lithium-Sulfur Batteries [J].
Guo, Juchen ;
Xu, Yunhua ;
Wang, Chunsheng .
NANO LETTERS, 2011, 11 (10) :4288-4294
[8]   High "C" rate Li-S cathodes: sulfur imbibed bimodal porous carbons [J].
He, Guang ;
Ji, Xiulei ;
Nazar, Linda .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (08) :2878-2883
[9]   Porous Hollow Carbon@Sulfur Composites for High-Power Lithium-Sulfur Batteries [J].
Jayaprakash, N. ;
Shen, J. ;
Moganty, Surya S. ;
Corona, A. ;
Archer, Lynden A. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (26) :5904-5908
[10]   Advances in Li-S batteries [J].
Ji, Xiulei ;
Nazar, Linda F. .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (44) :9821-9826