Relating protein conformational changes to packing efficiency and disorder

被引:12
作者
Bhardwaj, Nitin [1 ]
Gerstein, Mark [1 ,2 ,3 ]
机构
[1] Yale Univ, Program Computat Biol & Bioinformat, New Haven, CT 06520 USA
[2] Yale Univ, Dept Mol Biophys & Biochem, New Haven, CT 06520 USA
[3] Yale Univ, Dept Comp Sci, New Haven, CT 06520 USA
关键词
protein structure; packing efficiency; molecular motions; conformation changes; disorder; changing interfaces; protein cores; HYDROPHOBIC CORE; SECONDARY STRUCTURE; INTRINSIC DISORDER; MOLECULAR-DYNAMICS; DESIGN; FLEXIBILITY; UBIQUITIN; SELECTION; FEATURES; VOLUMES;
D O I
10.1002/pro.132
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Changes in protein conformation play key roles in facilitating various biochemical processes, ranging from signaling and phosphorylation to transport and catalysis. While various factors that drive these motions such as environmental changes and binding of small molecules are well understood, specific causative effects on the structural features of the protein due to these conformational changes have not been studied on a large scale. Here, we study protein conformational changes in relation to two key structural metrics: packing efficiency and disorder. Packing has been shown to be crucial for protein stability and function by many protein design and engineering studies. We study changes in packing efficiency during conformational changes, thus extending the analysis from a static context to a dynamic perspective and report some interesting observations. First, we study various proteins that adopt alternate conformations and find that tendencies to show motion and change in packing efficiency are correlated: residues that change their packing efficiency show larger motions. Second, our results suggest that residues that show higher changes in packing during motion are located on the changing interfaces which are formed during these conformational changes. These changing interfaces are slightly different from shear or static interfaces that have been analyzed in previous studies. Third, analysis of packing efficiency changes in the context of secondary structure shows that, as expected, residues buried in helices show the least change in packing efficiency, whereas those embedded in bends are most likely to change packing. Finally, by relating protein disorder to motions, we show that marginally disordered residues which are ordered enough to be crystallized but have sequence patterns indicative of disorder show higher dislocation and a higher change in packing than ordered ones and are located mostly on the changing interfaces. Overall, our results demonstrate that between the two conformations, the cores of the proteins remain mostly intact, whereas the interfaces display the most elasticity, both in terms of disorder and change in packing efficiency. By doing a variety of tests, we also show that our observations are robust to the solvation state of the proteins.
引用
收藏
页码:1230 / 1240
页数:11
相关论文
共 50 条
[1]   Anisotropy of fluctuation dynamics of proteins with an elastic network model [J].
Atilgan, AR ;
Durell, SR ;
Jernigan, RL ;
Demirel, MC ;
Keskin, O ;
Bahar, I .
BIOPHYSICAL JOURNAL, 2001, 80 (01) :505-515
[2]   Intrinsic disorder is a key characteristic in partners that bind 14-3-3 proteins [J].
Bustos, DM ;
Iglesias, AA .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2006, 63 (01) :35-42
[3]   Packing is a key selection factor in the evolution of protein hydrophobic cores [J].
Chen, JM ;
Stites, WE .
BIOCHEMISTRY, 2001, 40 (50) :15280-15289
[4]   The regions of securin and cyclin B proteins recognized by the ubiquitination machinery are natively unfolded [J].
Cox, CJ ;
Dutta, K ;
Petri, ET ;
Hwang, WC ;
Lin, YQ ;
Pascal, SM ;
Basavappa, R .
FEBS LETTERS, 2002, 527 (1-3) :303-308
[5]   Target Flexibility: An Emerging Consideration in Drug Discovery and Design [J].
Cozzini, Pietro ;
Kellogg, Glen E. ;
Spyrakis, Francesca ;
Abraham, Donald J. ;
Costantino, Gabriele ;
Emerson, Andrew ;
Fanelli, Francesca ;
Gohlke, Holger ;
Kuhn, Leslie A. ;
Morris, Garrett M. ;
Orozco, Modesto ;
Pertinhez, Thelma A. ;
Rizzi, Menico ;
Sotriffer, Christoph A. .
JOURNAL OF MEDICINAL CHEMISTRY, 2008, 51 (20) :6237-6255
[6]   Probing the role of packing specificity in protein design [J].
Dahiyat, BI ;
Mayo, SL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (19) :10172-10177
[7]   De novo protein design: Fully automated sequence selection [J].
Dahiyat, BI ;
Mayo, SL .
SCIENCE, 1997, 278 (5335) :82-87
[8]   DE-NOVO DESIGN OF THE HYDROPHOBIC CORES OF PROTEINS [J].
DESJARLAIS, JR ;
HANDEL, TM .
PROTEIN SCIENCE, 1995, 4 (10) :2006-2018
[9]   The protein trinity - linking function and disorder [J].
Dunker, AK ;
Obradovic, Z .
NATURE BIOTECHNOLOGY, 2001, 19 (09) :805-806
[10]   Intrinsic disorder and protein function [J].
Dunker, AK ;
Brown, CJ ;
Lawson, JD ;
Iakoucheva, LM ;
Obradovic, Z .
BIOCHEMISTRY, 2002, 41 (21) :6573-6582