Optimum mass percentage of microencapsulated PCM mixed with gypsum for improved latent heat storage

被引:16
作者
Errebai, Farid Boudali [1 ,2 ]
Chikh, Salah [1 ]
Derradji, Lotfi [2 ]
Amara, Mohamed [2 ]
Younsi, Zohir [3 ]
机构
[1] Univ Sci & Technol Houari Boumediene USTHB, LTPMP, FGMGP, Algiers, Algeria
[2] Ctr Natl Etud & Rech Integrees Batiment CNERIB, Algiers, Algeria
[3] Yncrea Hautes Etud Ingenieur, LGCgE EA 4515, 13 Rue Toul, F-59000 Lille, France
关键词
thermophysical properties; thermal diffusivity; volumetric heat capacity; thermal effusivity; phase change material; PHASE-CHANGE MATERIALS; THERMAL-ENERGY STORAGE; PERFORMANCE; CONCRETE; CAPACITY; COMFORT; BOARDS; WALL;
D O I
10.1016/j.est.2020.101910
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The present investigation aims at invalidating the idea that increasing the mass percentage of microencapsulated phase change material (mPCM) in gypsum always leads to an increase in heat absorption. This assertion is based solely on the thermophysical properties used to determinate four essential parameters that are the volumetric heat capacity, the thermal diffusivity, the thermal effusivity and the temperature range where the use of mPCM is better compared to the use of standard gypsum board. The findings show that an increase in the mPCM mass percentage in gypsum results in an improvement in heat storage when considering only volumetric heat capacity (steady-state). However, it is observed that 30% of mPCM in the composite can store more heat than 40% and 50% of mPCM when considering the thermal effusivity (dynamic state). Furthermore, it can be recommended to consider only 20% of mPCM's mass percentage, since it results in an optimal value of thermal effusivity and it yields an output very close to that of 30% of mPCM's mass percentage. In addition, increasing the mass percentage of mPCM allows a reduction of the suitable temperature range for high storage of thermal energy.
引用
收藏
页数:11
相关论文
共 42 条
[1]   Improving indoor thermal comfort by using phase change materials: A review [J].
Abuelnuor, Abuelnuor A. A. ;
Omara, Adil A. M. ;
Saqr, Khalid M. ;
Elhag, Ibrahim H. I. .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2018, 42 (06) :2084-2103
[2]   Dynamics of external wall structures with a PCM (phase change materials) in high latitude countries [J].
Chwieduk, Dorota A. .
ENERGY, 2013, 59 :301-313
[3]  
Clarke J. A., 2001, Energy Simulation in Building Design, V2nd ed.
[4]  
Derradji L, 2014, J ENERGY ENG, DOI 10.1061/(asce)ey.1943- 7897.0000238.
[5]   Experimental and multi-scale analysis of the thermal properties of Portland cement concretes embedded with microencapsulated Phase Change Materials (PCMs) [J].
Eddhahak-Ouni, Anissa ;
Drissi, Sarra ;
Colin, Johan ;
Neji, Jamel ;
Care, Sabine .
APPLIED THERMAL ENGINEERING, 2014, 64 (1-2) :32-39
[6]  
Errebai F Boudali, 2019, SOLUT SUSTAIN DEV, P115, DOI 10.1201/9780367824037-16.
[7]   Experimental and numerical investigation for improving the thermal performance of a microencapsulated phase change material plasterboard [J].
Errebai, Farid Boudali ;
Chikh, Salah ;
Derradji, Lotfi .
ENERGY CONVERSION AND MANAGEMENT, 2018, 174 :309-321
[8]   Physico-chemical and mechanical properties of microencapsulated phase change material [J].
Giro-Paloma, Jessica ;
Oncins, Gerard ;
Barreneche, Camila ;
Martinez, Monica ;
Ines Fernandez, A. ;
Cabeza, Luisa F. .
APPLIED ENERGY, 2013, 109 :441-448
[9]   Thermal behaviour of wallboard incorporating a binary mixture as a phase change material [J].
Hamdaoui, S. ;
Mahdaoui, M. ;
Kousksou, T. ;
El Afou, Y. ;
Msaad, A. Ait ;
Arid, A. ;
Ahachad, A. .
JOURNAL OF BUILDING ENGINEERING, 2019, 25
[10]   The behavior of self-compacting concrete containing micro-encapsulated Phase Change Materials [J].
Hunger, M. ;
Entrop, A. G. ;
Mandilaras, I. ;
Brouwers, H. J. H. ;
Founti, M. .
CEMENT & CONCRETE COMPOSITES, 2009, 31 (10) :731-743