HybridTuner: Tuning with Hybrid Derivative-Free Optimization Initialization Strategies

被引:0
作者
Sauk, Benjamin [1 ]
Sahinidis, Nikolaos V. [2 ,3 ]
机构
[1] Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA
[2] Georgia Inst Technol, H Milton Stewart Sch Ind & Syst Engn, Atlanta, GA 30332 USA
[3] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA
来源
LEARNING AND INTELLIGENT OPTIMIZATION, LION 15 | 2021年 / 12931卷
基金
美国国家科学基金会;
关键词
Autotuners; Derivative-free optimization; GPU computing; PATTERN SEARCH; ALGORITHMS; SOFTWARE; GEMM;
D O I
10.1007/978-3-030-92121-7_29
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
To utilize the full potential of advanced computer architectures, algorithms often need to be tuned to the architecture being used. We propose two hybrid derivative-free optimization (DFO) methods to maximize the performance of an algorithm after evaluating a small number of possible algorithmic configurations. Our autotuner (a) reduces the execution time of dense matrix multiplication by a factor of 1.4x compared to state-of-the-art autotuners, (b) identifies high-quality tuning parameters within only 5% of the computational effort required by other autotuners and (c) can be applied to any computer architecture.
引用
收藏
页码:379 / 393
页数:15
相关论文
共 45 条
  • [1] ADAMS B, 2016, MULTILEVEL PARALLEL
  • [2] [Anonymous], 2009, Tech. Rep. SAND2009-6265
  • [3] OpenTuner: An Extensible Framework for Program Autotuning
    Ansel, Jason
    Kamil, Shoaib
    Veeramachaneni, Kalyan
    Ragan-Kelley, Jonathan
    Bosboom, Jeffrey
    O'Reilly, Una-May
    Amarasinghe, Saman
    [J]. PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON PARALLEL ARCHITECTURES AND COMPILATION TECHNIQUES (PACT'14), 2014, : 303 - 315
  • [4] PetaBricks: A Language and Compiler for Algorithmic Choice
    Ansel, Jason
    Chan, Cy
    Wong, Yee Lok
    Olszewski, Marek
    Zhao, Qin
    Edelman, Alan
    Amarasinghe, Saman
    [J]. PLDI'09 PROCEEDINGS OF THE 2009 ACM SIGPLAN CONFERENCE ON PROGRAMMING LANGUAGE DESIGN AND IMPLEMENTATION, 2009, : 38 - 49
  • [5] COBAYN: Compiler Autotuning Framework Using Bayesian Networks
    Ashouri, Amir Hossein
    Mariani, Giovanni
    Palermo, Gianluca
    Park, Eunjung
    Cavazos, John
    Silvano, Cristina
    [J]. ACM TRANSACTIONS ON ARCHITECTURE AND CODE OPTIMIZATION, 2016, 13 (02)
  • [6] Audet C., 2011, SOFTWARE AUTOMATIC T, P255, DOI DOI 10.1007/978-1-4419-6935-415
  • [7] Finding optimal algorithmic parameters using derivative-free optimization
    Audet, Charles
    Orban, Dominique
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2006, 17 (03) : 642 - 664
  • [8] Balandat M., 2019, ARXIV PREPRINT ARXIV, P1
  • [9] Bergstra J., 2011, ADV NEURAL INFORM PR, V24, P1
  • [10] Birattari M., 2010, Experimental methods for the analysis of optimization algorithms, P311