Sharp Markov-type inequalities for rational functions on several intervals

被引:0
作者
Akturk, M. A. [1 ]
Lukashov, A. [2 ]
机构
[1] Istanbul Univ, Dept Engn Sci, TR-34320 Istanbul, Turkey
[2] Saratov NG Chernyshevskii State Univ, Dept Mech & Math, Saratov 410012, Russia
关键词
Inequalities in approximation; Approximation by rational functions; DERIVATIVES;
D O I
10.1016/j.jmaa.2015.12.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we give sharp Rusak- and Markov-type inequalities for rational functions on several intervals when the system of intervals is a "rational function inverse image" of an interval and those functions are large in gaps. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:1017 / 1022
页数:6
相关论文
共 34 条
  • [21] Hermite-Hadamard type inequalities for n-times differentiable and preinvex functions
    Wang, Shu-Hong
    Qi, Feng
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [22] Two Weighted Higher-Order Dynamic Inequalities of Opial Type with Two Functions
    Osman, M. M.
    Saker, S. H.
    Anderson, D. R.
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2022, 21 (03)
  • [23] Refined inequalities of perturbed Ostrowski type for higher-order absolutely continuous functions and applications
    Erden, Samet
    Celik, Nuri
    Khan, Muhammad Adil
    AIMS MATHEMATICS, 2021, 6 (01): : 362 - 377
  • [24] Simpson-like type inequalities for relative semi-(α, m)-logarithmically convex functions
    Zhou, Chang
    Peng, Cheng
    Du, Tingsong
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (08): : 4485 - 4498
  • [25] Ostrowski Type Inequalities for n-Times Strongly m-MT-Convex Functions
    Meftah, Badreddine
    Marrouche, Chayma
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2023, 20 (03): : 81 - 96
  • [26] Conformable fractional versions of Hermite-Hadamard-type inequalities for twice-differentiable functions
    Hezenci, Fatih
    Kara, Hasan
    Budak, Huseyin
    BOUNDARY VALUE PROBLEMS, 2023, 2023 (01)
  • [27] Some inequalities of Hermite-Hadamard type for m-harmonic-arithmetically convex functions
    Xi, Bo-Yan
    Qi, Feng
    Zhang, Tian-Yu
    SCIENCEASIA, 2015, 41 (05): : 357 - 361
  • [28] Bernstein-Nikol'skii-Markov-type inequalities for algebraic polynomials in a weighted Lebesgue space in regions with cusps
    Deger, Ugur
    Abdullayev, Fahreddin G.
    TURKISH JOURNAL OF MATHEMATICS, 2024, 48 (04) : 713 - 733
  • [29] OSTROWSKI-TYPE FRACTIONAL INTEGRAL INEQUALITIES FOR r -TIMES DIFFERENTIABLE h-CONVEX FUNCTIONS
    Hussain, Sabir
    Azhar, Faiza
    Latif, Muhammad Amer
    Khalid, Javariya
    PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2021, 53 (07): : 459 - 474
  • [30] Ostrowski-type inequalities pertaining to Atangana-Baleanu fractional operators and applications containing special functions
    Sahoo, Soubhagya Kumar
    Kodamasingh, Bibhakar
    Kashuri, Artion
    Aydi, Hassen
    Ameer, Eskandar
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2022, 2022 (01)