Sharp Markov-type inequalities for rational functions on several intervals

被引:0
作者
Akturk, M. A. [1 ]
Lukashov, A. [2 ]
机构
[1] Istanbul Univ, Dept Engn Sci, TR-34320 Istanbul, Turkey
[2] Saratov NG Chernyshevskii State Univ, Dept Mech & Math, Saratov 410012, Russia
关键词
Inequalities in approximation; Approximation by rational functions; DERIVATIVES;
D O I
10.1016/j.jmaa.2015.12.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we give sharp Rusak- and Markov-type inequalities for rational functions on several intervals when the system of intervals is a "rational function inverse image" of an interval and those functions are large in gaps. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:1017 / 1022
页数:6
相关论文
共 36 条
[21]   Fractional dual Simpson-type inequalities for differentiable s-convex functions [J].
Kamouche, Nesrine ;
Ghomrani, Sarra ;
Meftah, Badreddine .
ANALYSIS-INTERNATIONAL MATHEMATICAL JOURNAL OF ANALYSIS AND ITS APPLICATIONS, 2024, 44 (02) :75-84
[22]   Hermite-Hadamard type inequalities for n-times differentiable and preinvex functions [J].
Wang, Shu-Hong ;
Qi, Feng .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
[23]   Two Weighted Higher-Order Dynamic Inequalities of Opial Type with Two Functions [J].
Osman, M. M. ;
Saker, S. H. ;
Anderson, D. R. .
QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2022, 21 (03)
[24]   Refined inequalities of perturbed Ostrowski type for higher-order absolutely continuous functions and applications [J].
Erden, Samet ;
Celik, Nuri ;
Khan, Muhammad Adil .
AIMS MATHEMATICS, 2021, 6 (01) :362-377
[25]   Simpson-like type inequalities for relative semi-(α, m)-logarithmically convex functions [J].
Zhou, Chang ;
Peng, Cheng ;
Du, Tingsong .
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (08) :4485-4498
[26]   INEQUALITIES OF THE 3/8-SIMPSON TYPE FOR DIFFERENTIABLE FUNCTIONS VIA GENERALIZED FRACTIONAL OPERATORS [J].
Bayraktar, B. ;
Gomez, L. ;
Napoles, J. E. .
PROBLEMY ANALIZA-ISSUES OF ANALYSIS, 2025, 14 (02) :25-52
[27]   Ostrowski Type Inequalities for n-Times Strongly m-MT-Convex Functions [J].
Meftah, Badreddine ;
Marrouche, Chayma .
SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2023, 20 (03) :81-96
[28]   Conformable fractional versions of Hermite-Hadamard-type inequalities for twice-differentiable functions [J].
Hezenci, Fatih ;
Kara, Hasan ;
Budak, Huseyin .
BOUNDARY VALUE PROBLEMS, 2023, 2023 (01)
[29]   Some inequalities of Hermite-Hadamard type for m-harmonic-arithmetically convex functions [J].
Xi, Bo-Yan ;
Qi, Feng ;
Zhang, Tian-Yu .
SCIENCEASIA, 2015, 41 (05) :357-361
[30]   Bernstein-Nikol'skii-Markov-type inequalities for algebraic polynomials in a weighted Lebesgue space in regions with cusps [J].
Deger, Ugur ;
Abdullayev, Fahreddin G. .
TURKISH JOURNAL OF MATHEMATICS, 2024, 48 (04) :713-733