Hierarchical Stochastic Gradient Algorithm and its Performance Analysis for a Class of Bilinear-in-Parameter Systems

被引:44
作者
Ding, Feng [1 ]
Wang, Xuehai [2 ]
机构
[1] Nanchang Hangkong Univ, Sch Informat Engn, Nanchang 330063, Jiangxi, Peoples R China
[2] Xinyang Normal Univ, Coll Math & Informat Sci, Xinyang 464000, Peoples R China
基金
中国国家自然科学基金;
关键词
Parameter estimation; Gradient search; Hierarchical identification; Performance analysis; Bilinear-in-parameter system; WIENER NONLINEAR-SYSTEMS; SQUARES IDENTIFICATION ALGORITHM; STATE-SPACE SYSTEMS; AUXILIARY MODEL; HAMMERSTEIN SYSTEMS; FILTERING TECHNIQUE; DYNAMICAL-SYSTEMS; NEWTON ITERATION; DELAY;
D O I
10.1007/s00034-016-0367-7
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper considers the parameter identification for a special class of nonlinear systems, i.e., bilinear-in-parameter systems. Based on the hierarchical identification principle, a hierarchical stochastic gradient (HSG) estimation algorithm is presented. The basic idea is to decompose a bilinear-in-parameter system into two subsystems and to derive the HSG identification algorithm for estimating the system parameters by replacing the unknown variables in the information vectors with their estimates obtained at the previous time. The convergence analysis of the proposed algorithm indicates that the parameter estimation errors converge to zero under persistent excitation conditions. The simulation results show that the proposed algorithm is effective.
引用
收藏
页码:1393 / 1405
页数:13
相关论文
共 50 条
  • [41] Generalized Extended Stochastic Gradient Algorithm Implemented Parameter Identification for Complex Multivariable-Systems
    Wang, Wei
    PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON MODELLING, IDENTIFICATION AND CONTROL (ICMIC2019), 2020, 582 : 663 - 673
  • [42] Modified stochastic gradient algorithm for Hammerstein systems
    Lv, Lixing
    Chen, Jing
    INDUSTRIAL INSTRUMENTATION AND CONTROL SYSTEMS II, PTS 1-3, 2013, 336-338 : 2320 - 2323
  • [43] Performance Analysis of the Auxiliary Model-Based Stochastic Gradient Parameter Estimation Algorithm for State-Space Systems with One-Step State Delay
    Ding, Feng
    Gu, Ya
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2013, 32 (02) : 585 - 599
  • [44] Performance Analysis of the Auxiliary Model-Based Stochastic Gradient Parameter Estimation Algorithm for State-Space Systems with One-Step State Delay
    Feng Ding
    Ya Gu
    Circuits, Systems, and Signal Processing, 2013, 32 : 585 - 599
  • [45] Stochastic Gradient Based Iterative Identification Algorithm for a Class of Dual-rate Wiener Systems
    Leng, Jing
    Li, Junpeng
    Hua, Changchun
    Guan, Xinping
    PROCEEDINGS OF THE 2014 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2014, : 2190 - 2197
  • [46] Filtering-Based Maximum Likelihood Gradient Iterative Estimation Algorithm for Bilinear Systems with Autoregressive Moving Average Noise
    Li, Meihang
    Liu, Ximei
    Ding, Feng
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2018, 37 (11) : 5023 - 5048
  • [47] Gradient Parameter Estimation of a Class of Nonlinear Systems Based on the Maximum Likelihood Principle
    Chen Zhang
    Haibo Liu
    Yan Ji
    International Journal of Control, Automation and Systems, 2022, 20 : 1393 - 1404
  • [48] Gradient Parameter Estimation of a Class of Nonlinear Systems Based on the Maximum Likelihood Principle
    Zhang, Chen
    Liu, Haibo
    Ji, Yan
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2022, 20 (05) : 1393 - 1404
  • [49] State filtering-based least squares parameter estimation for bilinear systems using the hierarchical identification principle
    Zhang, Xiao
    Ding, Feng
    Xu, Ling
    Yang, Erfu
    IET CONTROL THEORY AND APPLICATIONS, 2018, 12 (12) : 1704 - 1713
  • [50] Auxiliary model multiinnovation stochastic gradient parameter estimation methods for nonlinear sandwich systems
    Xu, Ling
    Ding, Feng
    Yang, Erfu
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2021, 31 (01) : 148 - 165