Hierarchical Stochastic Gradient Algorithm and its Performance Analysis for a Class of Bilinear-in-Parameter Systems

被引:44
作者
Ding, Feng [1 ]
Wang, Xuehai [2 ]
机构
[1] Nanchang Hangkong Univ, Sch Informat Engn, Nanchang 330063, Jiangxi, Peoples R China
[2] Xinyang Normal Univ, Coll Math & Informat Sci, Xinyang 464000, Peoples R China
基金
中国国家自然科学基金;
关键词
Parameter estimation; Gradient search; Hierarchical identification; Performance analysis; Bilinear-in-parameter system; WIENER NONLINEAR-SYSTEMS; SQUARES IDENTIFICATION ALGORITHM; STATE-SPACE SYSTEMS; AUXILIARY MODEL; HAMMERSTEIN SYSTEMS; FILTERING TECHNIQUE; DYNAMICAL-SYSTEMS; NEWTON ITERATION; DELAY;
D O I
10.1007/s00034-016-0367-7
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper considers the parameter identification for a special class of nonlinear systems, i.e., bilinear-in-parameter systems. Based on the hierarchical identification principle, a hierarchical stochastic gradient (HSG) estimation algorithm is presented. The basic idea is to decompose a bilinear-in-parameter system into two subsystems and to derive the HSG identification algorithm for estimating the system parameters by replacing the unknown variables in the information vectors with their estimates obtained at the previous time. The convergence analysis of the proposed algorithm indicates that the parameter estimation errors converge to zero under persistent excitation conditions. The simulation results show that the proposed algorithm is effective.
引用
收藏
页码:1393 / 1405
页数:13
相关论文
共 50 条
  • [31] Iterative Parameter Estimation for a Class of Multivariable Systems Based on the Hierarchical Identification Principle and the Gradient Search
    Dongqing Wang
    Rui Ding
    Xinzhuang Dong
    Circuits, Systems, and Signal Processing, 2012, 31 : 2167 - 2177
  • [32] Maximum likelihood stochastic gradient parameter estimation algorithm for multi-input multi-output systems
    Li, Junhong
    Jiang, Ping
    Yang, Yi
    26TH CHINESE CONTROL AND DECISION CONFERENCE (2014 CCDC), 2014, : 602 - 605
  • [33] Hierarchical stochastic gradient identification for non-uniformly sampling hammerstein systems with colored noise
    Liu Ranran
    Zheng Enxing
    Chang Shan
    Bei Shaoyi
    Zhang Lanchun
    COMPUTER SYSTEMS SCIENCE AND ENGINEERING, 2016, 31 (06): : 425 - 430
  • [34] A multi-innovation generalized extended stochastic gradient algorithm for output nonlinear autoregressive moving average systems
    Hu, Yuanbiao
    Liu, Baolin
    Zhou, Qin
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 247 : 218 - 224
  • [35] Recursive parameter estimation and its convergence for bilinear systems
    Zhang, Xiao
    Ding, Feng
    IET CONTROL THEORY AND APPLICATIONS, 2020, 14 (05) : 677 - 688
  • [36] Performance analysis of auxiliary model based Stochastic gradient parameter estimation for MIMO systems under weak conditions
    Ding, Feng
    Chen, Xiaowei
    Wang, Jinhai
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES A-MATHEMATICAL ANALYSIS, 2006, 13 : 993 - 997
  • [37] Hierarchical gradient based and hierarchical least squares based iterative parameter identification for CARARMA systems
    Ding, Feng
    Liu, Ximei
    Chen, Huibo
    Yao, Guoyu
    SIGNAL PROCESSING, 2014, 97 : 31 - 39
  • [38] Design of fractional hierarchical gradient descent algorithm for parameter estimation of nonlinear control autoregressive systems
    Chaudhary, Naveed Ishtiaq
    Raja, Muhammad Asif Zahoor
    Khan, Zeshan Aslam
    Mehmood, Ammara
    Shah, Syed Muslim
    CHAOS SOLITONS & FRACTALS, 2022, 157
  • [39] Moving data window gradient-based iterative algorithm of combined parameter and state estimation for bilinear systems
    Liu, Siyu
    Ding, Feng
    Hayat, Tasawar
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2020, 30 (06) : 2413 - 2429
  • [40] A Multi-Innovation Stochastic Gradient Parameter Estimation Algorithm for Controlled Autoregressive ARMA Systems Based on the Data Filtering
    Wang, Shijun
    Ding, Rui
    2013 INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND TECHNOLOGY (ICIST), 2013, : 205 - 210